
L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Memory Allocation I
CSE 351 Summer 2021

Adapted from 
https://xkcd.com/1093/

Instructor: 
Mara Kirdani-Ryan

Teaching Assistants:
Kashish Aggarwal
Nick Durand
Colton Jobs
Tim Mandzyuk

https://xkcd.com/627/
http://www.youtube.com/watch?v=F3ZkoN4r66A&t=225


L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Gentle, Loving reminders

o hw18, 19 due tonight!
o hw20 due Friday (8/13)
o hw21 due Monday (8/16)

o Lab 5 is out!
• Section tomorrow should help!
• Lecture Friday should help too!
• If you’re using late days, send us an email!

We need to submit final grades!

2



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Unit 3: Scale, Coherence
● Caches, Process, 

Virtual Memory
○ Multiple programs? 

Larger programs?
● Metrics & Structures
● Memory Allocation

3



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

New topic, what’s implicit?

4



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Malloc: Everything all at once
● Both technically, and sociotechnically!

○ Builds on alignment, memory access, pointer 
arithmetic, structs

● Memory allocation is structural
○ Much like this entire course!
○ Historic, ideological

● Y’all will probably experience more historic 
structures, built from ideology & metrics
○ I want to make sure y’all have practice with analysis
○ Ideally yours, not mine

5



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Let’s try a new thing!
● For this lecture (and beyond, if you so choose), if 

you see something, say something!
○ Use 🤖, or 🏠

● I’ll lovingly ask you to explain what’s implicit, 
what’s assumed
○ This, at some level, is a personal interpretation
○ How you’re feeling about the material, now.

● Disclaimer: I really don’t know how this will go!
○ We can try it together?

6



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Socio-Technical Callouts
● Embedded values: CS tends to emphasize 

efficiency, performance, minimalism, ruggedness
○ We shape our tools, and our tools shape us

● Ideology: What’s taken as fact, so much so that 
we don’t even need to ask?
○ Neoliberalism: individualism, self-sufficiency, 

self-reliance, emphasize individuals over structures
○ Building upon structures without examining them!

● Access: What structures exist? Who were they 
designed for? Who can use them?

● Metrics: Choice of metric is ideological, and 
shapes structures; optimizing for the average 
case harms people, knowledge & positivism  7



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Sound good?
Feel ok?
Anything you’d like to be different?

8



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Back to memory allocation!

9



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Learning Objectives
Understanding this lecture means you can:
● Differentiate between explicit and implicit 

memory allocators, and utilize C’s memory 
allocation interface

● Define throughput and utilization, how 
fragmentation affects utilization, and how both 
determine allocator implementations

● Understand implicit free lists allocators
● Point out ideological assumptions in this lecture, 

with some help!

10



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Multiple Ways to Store Program Data
o Static global data

• Fixed size at compile-time
• Entire lifetime of the program 

(loaded from executable)
• Portion is read-only 

(e.g. string literals)
o Stack-allocated data

• Local/temporary variables
• Can be dynamically sized (in some versions of C)

• Known lifetime (deallocated on return)
o Dynamic (heap) data

• Size known only at runtime (i.e. based on user-input)
• Lifetime known only at runtime (long-lived data structures)

11

int array[1024];

int* foo(int n) {
  int tmp;
  int local_array[n];
  
  int* dyn = 
    (int*)malloc(n*sizeof(int));
  return dyn;
}



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Memory Allocation
o Dynamic memory allocation

• Introduction and goals
• Allocation and deallocation (free)
• Fragmentation

o Explicit allocation implementation
• Implicit free lists
• Explicit free lists (Lab 5)
• Segregated free lists

o Common memory-related bugs in C

12



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Dynamic Memory Allocation
o Programmers use dynamic memory allocators to 

acquire virtual memory at run time 
• For data structures whose size 

(or lifetime) is known only at runtime
• Manage the heap of a process’ 

virtual memory:

o Types of allocators
• Explicit allocator:  programmer allocates & frees space 

• Example:  malloc and free in C
• Implicit allocator:  programmer only allocates space 

• Example:  garbage collection in Java, Caml, and Lisp
13

Program text (.text)
Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Dynamic Memory Allocation
o Allocator organizes heap as a collection of 

variable-sized blocks, either allocated or free
• Allocator requests pages in the heap region; VM 

hardware and OS kernel allocate pages to the process
• Application objects are typically smaller than pages, so 

the allocator manages blocks within pages  
• (Larger objects handled

 too; ignored here)

14

Top of 
heap
 (brk ptr)

Program text (.text)
Initialized data (.data)

0

Heap (via malloc)

Uninitialized data (.bss)

User stack



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Allocating Memory in C
o Need to #include <stdlib.h>
o void* malloc(size_t size)

• Allocates a continuous block of size bytes of uninitialized memory
• Returns a pointer to the beginning of the allocated block; NULL 

indicates failed request 
• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
• Returns NULL if allocation failed (also sets errno) or size==0

• Different blocks not necessarily adjacent
o Good practices:

• ptr = (int*) malloc(n*sizeof(int));
• sizeof makes code more portable
• void* is implicitly cast into any pointer type; explicit typecast will help 

you catch coding errors when pointer types don’t match

15



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Allocating Memory in C
o Need to #include <stdlib.h>
o void* malloc(size_t size)

• Allocates a continuous block of size bytes of uninitialized memory
• Returns a pointer to the beginning of the allocated block; NULL 

indicates failed request 
• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
• Returns NULL if allocation failed (also sets errno) or size==0

• Different blocks not necessarily adjacent
o Related functions:

• void* calloc(size_t nitems, size_t size)
• “Zeros out” allocated block

• void* realloc(void* ptr, size_t size)
• Changes the size of a previously allocated block (if possible)

• void* sbrk(intptr_t increment)
• Used internally by allocators to grow or shrink the heap

16



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Freeing Memory in C
o Need to #include <stdlib.h>
o void free(void* p)

• Releases whole block ref’d by p to the pool of available memory
• Pointer p must be the address originally returned by 
m/c/realloc (i.e. beginning of the block), otherwise system 
exception raised

• Don’t call free on a block that has already been released or on 
NULL!

17



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Memory Allocation Example in C

18

void foo(int n, int m) {
  int i, *p;
  p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints */
  if (p == NULL) {                 /* check for allocation error */
    perror("malloc");
    exit(0);
  }
  for (i=0; i<n; i++)               /* initialize int array */
    p[i] = i;
  /* add space for m ints to end of p block */
  p = (int*) realloc(p,(n+m)*sizeof(int));
  if (p == NULL) {             /* check for allocation error */
    perror("realloc");
    exit(0);
  }
  for (i=n; i < n+m; i++)           /* initialize new spaces */
    p[i] = i;
  for (i=0; i<n+m; i++)             /* print new array */ 
    printf("%d\n", p[i]);
  free(p);                          /* free p */
}



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Notation
o We will draw memory divided into words

• Each word is 64 bits = 8 bytes
• Allocations will be in sizes that are a multiple of boxes

(i.e. multiples of 8 bytes)
• Book and old videos still use 4-byte word

• Holdover from 32-bit version of textbook 🙁

19

Allocated 
block

(4 words)

Free 
block

(3 words)
Free word

Allocated word

= 1 word = 8 bytes



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Allocation Example

20

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(16)

= 8-byte 
word



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Implementation Interface
o Applications

• Issue arbitrary sequence of malloc and free requests
• Must never access memory not currently allocated 
• Must never free memory not currently allocated

• Can only use free with previously malloc’ed blocks

o Allocators
• Can’t control number or size of allocated blocks
• Must respond immediately to malloc
• Must allocate blocks from free memory
• Must align blocks so they satisfy alignment requirements
• Can’t move the allocated blocks

21



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Performance Goals
o  

22



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Performance Goals
o  

23



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Fragmentation
o Poor memory utilization caused by fragmentation

• Sections of memory are not used to store anything 
useful, but cannot satisfy allocation requests

• Two types:  internal and external

o Recall:  Fragmentation in structs
• Internal fragmentation was wasted space inside of the 

struct (between fields) due to alignment
• External fragmentation was wasted space between 

struct instances (e.g. in an array) due to alignment

o Now referring to wasted space in the heap inside 
or between allocated blocks

24



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Internal Fragmentation
o For a given block, internal fragmentation occurs if 

payload is smaller than the block

o Causes:
• Padding for alignment purposes
• Overhead of maintaining heap data structures (inside 

block, outside payload)
• Explicit policy decisions (e.g. return a big block to 

satisfy a small request)
o Easy to measure because only depends on past 

requests
25

payload Internal 
fragmentation

block

Internal 
fragmentation



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

External Fragmentation
o For the heap, external fragmentation occurs when 

allocation/free pattern leaves “holes” between blocks
• That is, the aggregate payload is non-continuous
• Can cause situations where there is enough aggregate heap 

memory to satisfy request, but no single free block is large enough

o Don’t know what future requests will be
• Difficult to impossible to know if past placements will become 

problematic
26

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(48) Oh no! (What would happen now?)

= 8-byte 
word



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Checking in!
o Which of the following statements is FALSE?
🐶 Arrays that are sized at runtime should 
be stored on the heap

  🐈 malloc returns an address of a block
  that is filled with garbage
  🐑 Peak memory utilization is a measure of 
  both internal and external fragmentation
  🦄  An allocation failure will cause your
  program to stop

      🥶 Help!

27



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Principles of memory 
allocation, feeling ok?

28



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Implementation Issues
o How do we know how much memory to free given 

just a pointer?
o How do we keep track of the free blocks?
o How do we pick a block to use for allocation 

(when many might fit)?
o What do we do with the extra space when 

allocating a structure that is smaller than the free 
block it is placed in?

o How do we reinsert a freed block into the heap?

29



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Knowing How Much to Free
o Standard method

• Keep block length in the word preceding the data
• This word is often called the header field or header

• Requires an extra word for every allocated block

30

free(p0)

p0 = malloc(32)

p0

block size data

40

= 8-byte word (free)

= 8-byte word (allocated)



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Tracking Free Blocks
1)  Implicit free list using length – links all blocks using math

• No actual pointers, and must check each block if allocated or free

2)  Explicit free list among only the free blocks, using 
pointers

3)  Segregated free list
• Different free lists for different size “classes”

4)  Blocks sorted by size
• Can use a balanced binary tree (e.g. red-black tree) with pointers 

within each free block, and the length used as a key
31

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Implicit Free Lists
 

32

Format of 
allocated and 

free blocks:

a = 1:  allocated block  
a = 0:  free block

size:  block size (in 
bytes)

payload:  application 
data
(allocated blocks only)

size

8 bytes

payload

a

optional
padding

e.g. with 8-byte 
alignment, possible 
values for size:
    00001000 = 8 bytes
    00010000 = 16 bytes
    00011000 = 24 bytes
    . . .

Let X=header (first 
word)
x = size | a;
a = x & 1;
size = x & ~1;



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Implicit Free List Example

o 16-byte alignment for payload
• May require initial padding (internal fragmentation)
• Note size:  padding is considered part of previous block

o Special one-word marker (0|1) marks end of list
• Zero size is distinguishable from all other blocks

33

❖ Each block begins with header (size in bytes and 
allocated bit)

❖ Sequence of blocks in heap (size|allocated): 
16|0, 32|1, 64|0, 32|1

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word
unused

Start of heap

16 bytes = 2 word alignment



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Finding a Free Block
o First fit

• Search list from beginning, choose first free block 
that fits:

• Can take time linear in total number of blocks
• In practice can cause “splinters” at beginning of list

34

p = heap_start; 
while ((p < end) &&     // not past end
       ((*p & 1) ||     // already allocated
        (*p <= len))) { // too small 
  p = p + (*p & -2);    // go to next block (UNSCALED +)
}                       // p points to selected block or end

(*p) gets the block header
(*p & 1) extracts the allocated bit 
(*p & -2) extracts the size

16|0 32|1 64|0 32|1 0|1

Free word

Allocated word

Allocated word
unused

p = heap_start



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Implicit List:  Finding a Free Block
o Next fit

• Like first-fit, but search list starting where previous 
search finished

• Should often be faster than first-fit: avoids re-scanning 
unhelpful blocks

• Some research suggests that fragmentation is worse

o Best fit
• Search the list, choose the best free block:  large 

enough AND with fewest bytes left over
• Keeps fragments small—usually helps fragmentation
• Usually worse throughput

35



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Implicit free lists ok?

36



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

A few thoughts on allocators

37



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Dynamic Memory Allocation
o Programmers use dynamic memory allocators to 

acquire virtual memory at run time 
• For data structures whose size 

(or lifetime) is known only at runtime
• Manage the heap of a process’ 

virtual memory:

o Types of allocators
• Explicit allocator:  programmer allocates & frees space 

• Example:  malloc and free in C
• Implicit allocator:  programmer only allocates space 

• Example:  garbage collection in Java, Caml, and Lisp
38

Program text (.text)
Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

🏠
🤖



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Performance Goals
o  

39

🏠
🤖



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Performance Goals
o  

40

🏠
🤖



L02:  Memory & Data IL22: Malloc I CSE351, Summer 2021

Fragmentation
o Poor memory utilization caused by fragmentation

• Sections of memory are not used to store anything 
useful, but cannot satisfy allocation requests

• Two types:  internal and external

o Recall:  Fragmentation in structs
• Internal fragmentation was wasted space inside of the 

struct (between fields) due to alignment
• External fragmentation was wasted space between 

struct instances (e.g. in an array) due to alignment

o Now referring to wasted space in the heap inside 
or between allocated blocks

41

🏠
🤖


