
L02: Memory & Data IL19: Processes CSE351, Summer 2021

Virtual Memory I
CSE 351 Summer 2021

Instructor:
Mara Kirdani-Ryan

Teaching Assistants:
Kashish Aggarwal
Nick Durand
Colton Jobes
Tim Mandzyuk

http://www.youtube.com/watch?v=Lyux-sEdlbg

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Gentle, Loving Reminders

o hw17 due tonight!
o hw18, 19 due Wednesday (8/11)

• Lots of virtual memory

o Lab 4 due Monday (8/9)
• All about caches!

2

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Learning Objectives
Understanding this lecture means you can:
● Explain the purpose of virtual memory, and how

indirection is used to achieve abstraction
● Problematize visions of computing grandeur,

especially around “good intentions”

3

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Unit 3: Scale, Coherence
● Caches, Process,

Virtual Memory
○ Multiple programs?

Larger programs?
● Metrics & Structures
● Scale, Automation

4

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Virtual Memory (VM*)
o Overview and motivation
o VM as a tool for caching
o Address translation
o VM as a tool for memory management
o VM as a tool for memory protection

5
*Not to be confused with “Virtual Machine” which is a whole other thing.

Warning: Virtual memory is pretty
complex, but crucial for understanding
how processes work and for debugging

performance

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Memory is virtual!

6

0xFF∙∙∙∙∙∙F

0x00∙∙∙∙∙∙0

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Problem 1: How Does Everything Fit?

7

64-bit virtual addresses can address
several exabytes

(18,446,744,073,709,551,616 bytes)

Physical main memory
offers

a few gigabytes
(e.g. 8,589,934,592 bytes)

?

1 virtual address space per
process, with many processes…

(Not to scale; physical memory would be smaller
than the period at the end of this sentence
compared to the virtual address space.)

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Problem 2: Memory Management

8

Physical main memory

What goes
where?

stack
heap

.text

.data
…

Process 1
Process 2
Process 3
…
Process n

x

Each process has…We have multiple
processes:

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Problem 3: How To Protect

9

Physical main memory

Process i

Process j

Problem 4: How To Share?
Physical main memory

Process i

Process j

L02: Memory & Data IL19: Processes CSE351, Summer 2021

How can we solve these problems?
o “Any problem in computer science can be solved by

adding another level of indirection.”
– David Wheeler, inventor of the subroutine

o Without Indirection

o With Indirection

10

What if I want to move Thing?

P2 Thing

P1

P3

P2 Thing

P3

P1

NewThing

NewThing

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Indirection
o Indirection: The ability to reference something using a

name, reference, or container instead of the value itself.
A flexible mapping between a name and a thing allows
changing the thing without notifying holders of the name.
• Adds some work (now have to look up 2 things instead of 1)
• But don’t have to track all uses of name/address (single source!)

o Examples:
• Phone system: cell phone number portability
• Domain Name Service (DNS): translation from name to IP

address
• Call centers: route calls to available operators, etc.
• Dynamic Host Configuration Protocol (DHCP): local network

address assignment
11

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Indirection in Virtual Memory

12

o Each process gets a private virtual address space
o Solves the previous problems!

Physical memory

Virtual memory

Virtual memory

Process 1

mapping

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Address Spaces

13

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Mapping
o A virtual address (VA) can be mapped to either physical

memory or disk
• Unused VAs may not have a mapping
• VAs from different processes may map to same location in

memory/disk

14

 
 
 
 

Process 2’s Virtual
Address Space

 
 
 
 

Physical
Memory

Disk

 
 
 
 

Process 1’s Virtual
Address Space

“Swap Space”

L02: Memory & Data IL19: Processes CSE351, Summer 2021

A System Using Physical Addressing

15

o Used in “simple” systems with (usually) just one
process:
• Embedded microcontrollers in devices like cars,

elevators, and digital picture frames

0:
1:

M-1:

Main
memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data (int/float)

8: ...

0x4

L02: Memory & Data IL19: Processes CSE351, Summer 2021

A System Using Virtual Addressing

16

o Physical addresses are invisible to programs
• Used in all modern desktops, laptops, smartphones…
• “Classic” CS idea, made visible

0:
1:

M-1:

Main
memory

MMU

2:
3:
4:
5:
6:
7:

Physical
address

(PA)

Data (int/float)

8: ...
CPU

Virtual address
(VA)

CPU Chip

0x40x4100

Memory Management
Unit

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Why Virtual Memory (VM)?
o Efficient use of limited main memory (RAM)

• Use RAM as a cache for the parts of a virtual address space
• Some non-cached parts stored on disk
• Some (unallocated) non-cached parts stored nowhere

• Keep only active areas of virtual address space in memory
• Transfer data back and forth as needed

o Simplifies memory management for programmers
• Each process “gets” the same full, private linear address space

o Isolates address spaces (protection)
• One process can’t interfere with another’s memory

• They operate in different address spaces
• User process cannot access privileged information

• Different sections of address spaces have different permissions

17

L02: Memory & Data IL19: Processes CSE351, Summer 2021

VM and the Memory Hierarchy

18

VP 0
VP 1

VP
2n-p-1

Virtual memory

Unallocated

Unallocated

0

2n-1

PP
2m-p-1

Physical memory
Empty

Empty

PP 0
PP 1

Empty

2m-1

0

Vi
rtu

al
 p

ag
es

(V

P
's

)

Disk

P
hysical pages

(P
P

's)

“Swap Space”

L02: Memory & Data IL19: Processes CSE351, Summer 2021

or: VM as DRAM Cache for Disk

19

PP
2m-p-1

Physical
memory

Empty

Empty

Uncached

VP 0
VP 1

VP
2n-p-1

Virtual
memory

Unallocated
Cached
Uncached
Unallocated
Cached
Uncached

PP 0
PP 1

Empty
Cached

0

N-1
M-1

0

Virtual pages
(VPs)

“stored on disk”

Physical pages
(PPs)

cached in DRAM

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Memory Hierarchy: Core 2 Duo

20

DiskMain
Memory

L2
unified
cache

L1
I-cache

L1
D-cacheCPU Reg

2 B/cycle8 B/cycle16 B/cycle 1 B/30 cyclesThroughput:
Latency: 100 cycles14 cycles3 cycles millions

~4 MB

32 KB

~8 GB ~500 GB

Not drawn to scale

Miss
Penalty
(latency)

33x

Miss
Penalty
(latency)
10,000x

SRAM
Static Random Access Memory

DRAM
Dynamic Random Access Memory

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Virtual Memory Design Consequences
o Large page size: typically 4-8 KiB or 2-4 MiB

• Can be up to 1 GiB (for “Big Data” apps on big computers)
• Compared with 64-byte cache blocks

o Fully associative
• Any virtual page can be placed in any physical page
• Requires a “large” mapping function – different from CPU caches

o Fancy, expensive replacement algorithms in OS
• Too complicated and open-ended to be implemented in hardware

o Write-back rather than write-through
• Really don’t want to write to disk every time we write to memory
• Some things may never end up on disk (e.g. stack for short-lived

process)
21

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Why does VM work on RAM/disk?
o Avoids disk accesses because of locality

• Same reason that L1 / L2 / L3 caches work

o Set of virtual pages that a program is “actively”
accessing at any point is called its working set
• If (working set of one process ≤ physical memory):

• Good performance for one process (after compulsory
misses)

• If (working sets of all processes > physical memory):
• Thrashing: Performance meltdown where pages are

swapped between memory and disk continuously
(CPU always waiting or paging)

• Why adding RAM speeds up computer performance
22

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Summary
o Virtual memory provides:

• Ability to use limited memory (RAM) across multiple
processes

• Illusion of contiguous virtual address space for each
process

• Protection and sharing amongst processes

23

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Computing and Vision

24

L02: Memory & Data IL19: Processes CSE351, Summer 2021

What’s your vision for
computing?
Is there a collective vision?

25

L02: Memory & Data IL19: Processes CSE351, Summer 2021

“To provide free and easy access to a vast
array of knowledge, ideas, and information
by supporting lifelong learning and a love of
reading, so that everyone in our community
is empowered, informed, and enriched.”

Seattle Public Library Mission, 2002

26

L02: Memory & Data IL19: Processes CSE351, Summer 2021

27

L02: Memory & Data IL19: Processes CSE351, Summer 2021

The difference is scale!
Seattle, versus the world.

28

L02: Memory & Data IL19: Processes CSE351, Summer 2021

What’s the ideological
vision of computing?

29

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Ideology: What’s so
true, that you don’t
even need to ask?

30

L02: Memory & Data IL19: Processes CSE351, Summer 2021

31

L02: Memory & Data IL19: Processes CSE351, Summer 2021

32

Quite literally, not a computer in sight

L02: Memory & Data IL19: Processes CSE351, Summer 2021

33

Quite literally, not a computer in sight

L02: Memory & Data IL19: Processes CSE351, Summer 2021

34

Again, “Earth’s…”

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Vision:
Operating on a global
& universal scale

35

L02: Memory & Data IL19: Processes CSE351, Summer 2021

What might this mean?

36

L02: Memory & Data IL19: Processes CSE351, Summer 2021

“In my very long term worldview, our
software understands deeply what you’re
knowledgeable about, what you’re not, and
how to organize the world so that the world
can solve important problems”

Larry Page, Google Founder, 2013

37

L02: Memory & Data IL19: Processes CSE351, Summer 2021

“Our greatest opportunities are now global — like
spreading prosperity and freedom, promoting peace
and understanding, lifting people out of poverty, and
accelerating science. Our greatest challenges also
need global responses — like ending terrorism,
fighting climate change, and preventing pandemics.
Progress now requires humanity coming together
not just as cities or nations, but also as a global
community….in times like these, the most important
thing we at Facebook can do is develop the social
infrastructure to give people the power to build a
global community that works for all of us.”

Mark Zuckerberg, 2017

38

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Vision:
Operating on a global &
universal scale, with Big
Tech at the helm

39

L02: Memory & Data IL19: Processes CSE351, Summer 2021

The ingredients of totalitarianism
● Strong, charismatic idealism

40

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Facebook

41

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Amazon

42

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Google

43

L02: Memory & Data IL19: Processes CSE351, Summer 2021

“Microsoft is trying to steal your data just as
much as Google, they’re just not as popular”

“Everything’s driven by enterprise adoption,
because that’s where the money is. Individuals
aren’t prioritized”

○

44

L02: Memory & Data IL19: Processes CSE351, Summer 2021

I’m sure they mean well…

45

L02: Memory & Data IL19: Processes CSE351, Summer 2021

I’m sure they mean well
● Generally, utopia vision from Big Tech Leaders

○ “In the future, technology is going to...free us up to
spend more time on the things we all care about, like
enjoying and interacting with each other and
expressing ourselves in new ways” Zuckerberg, 2017

○ Eliminate poverty, hunger,
○ Fulfil the needs of everyone

● I’m sure they have good intentions
○ But, no one has any idea how to operate at scale

46

L02: Memory & Data IL19: Processes CSE351, Summer 2021

VM’s implemented to account for
computing at scale.

Multi-process machines warrant
virtual memory.

47

L02: Memory & Data IL19: Processes CSE351, Summer 2021

If the vision is scale, are we
prepared for the scale that
we look to operate at?

48

L02: Memory & Data IL19: Processes CSE351, Summer 2021

“I am here to suggest that you voluntarily renounce
exercising the power which being an American
technologist gives you. I am here to entreat you to freely,
consciously and humbly give up the legal right you have
to impose your benevolence on Mexico the world. I am
here to challenge you to recognize your inability, your
powerlessness and your incapacity to do the "good"
which you intended to do.
I am here to entreat you to use your money, your status
and your education to travel in Latin America around the
world. Come to look, come to climb our mountains, to
enjoy our flowers. Come to study. But do not come to
help.”

49

L02: Memory & Data IL19: Processes CSE351, Summer 2021

You have unprecedented power and
access as technologists.

What would you like to accomplish?
Who do you want to serve?

Ideally, better than “move fast and break things”

50

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Fork-Exec
o fork-exec model:

• fork() creates a copy of the current process
• exec*() replaces the current process’ code and

address space with the code for a different program
• Whole family of exec calls – see exec(3) and
execve(2)

51

// Example arguments: path="/usr/bin/ls",
// argv[0]="/usr/bin/ls", argv[1]="-ahl", argv[2]=NULL
void fork_exec(char *path, char *argv[]) {
 pid_t fork_ret = fork();
 if (fork_ret != 0) {
 printf("Parent: created a child %d\n", fork_ret);
 } else {
 printf("Child: about to exec a new program\n");
 execv(path, argv);
 }
 printf("This line printed by parent only!\n");
}

Note: the return values of fork
and exec* should be checked for

errors

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Exec-ing a new program

52

Stack

Code:
/usr/bin/bash

Data

Heap

Stack

Code:
/usr/bin/bash

Data

Heap

Stack

Code:
/usr/bin/bash

Data

Heap

Stack

Code: /usr/bin/ls
Data

fork()

exec*()

Very high-level diagram of
what happens when you run
the command “ls” in a Linux
shell:
❖ This is the loading part of

CALL!parent chil
d

child

L02: Memory & Data IL19: Processes CSE351, Summer 2021

execve Example

53

"/usr/bin/ls"
"-l"
"lab4"

"USER=rea"

"PWD=/homes/iws/rea"

myargv[argc] = NULL
myargv[2]
myargv[1]
myargv[0]

envp[n] = NULL
envp[n-1]
...
envp[0]

environ

myargv

if ((pid = fork()) == 0) { /* Child runs program */
 if (execve(myargv[0], myargv, environ) < 0) {
 printf("%s: Command not found.\n", myargv[0]);
 exit(1);
 }
}

Execute "/usr/bin/ls –l lab4" in child process using current
 environment:

(argc == 3)

Run the printenv command in a Linux shell to see your own environment
variables

This is extra
(non-testable

) material

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Stack
Structure on a
New Program
Start

54

Null-terminated
environment variable

strings
Null-terminated

command-line arg strings

envp[n] == NULL
envp[n-1]

...
envp[0]

argv[argc] = NULL
argv[argc-1]

...
argv[0]

Future stack frame for
main

environ
(global

var)

Bottom of
stack

argv
(in

%rsi)

envp
(in %rdx)

Stack frame for
libc_start_main

argc
(in

%rdi)

This is extra
(non-testable

) material

L02: Memory & Data IL19: Processes CSE351, Summer 2021

exit: Ending a process
o void exit(int status)

• Explicitly exits a process
• Status code: 0 is used for a normal exit, nonzero for

abnormal exit

o The return statement from main() also ends a
process in C
• The return value is the status code

55

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Processes
o Processes and context switching
o Creating new processes

• fork(), exec*(), and wait()
o Zombies

56

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Zombies
o A terminated process still consumes system

resources
• Various tables maintained by OS
• Called a “zombie” (a living corpse, half alive and half

dead)
o Reaping is performed by parent on terminated

child
• Parent is given exit status information and kernel then

deletes zombie child process
o What if parent doesn’t reap?

• If any parent terminates without reaping a child, then
the orphaned child will be reaped by init process (pid
of 1)
• Note: on recent Linux systems, init has been

renamed systemd
• In long-running processes (e.g. shells, servers) we

need explicit reaping

57

L02: Memory & Data IL19: Processes CSE351, Summer 2021

wait: Synchronizing with Children
o int wait(int *child_status)

• Suspends current process (i.e. the parent) until one of
its children terminates

• Return value is the PID of the child process that
terminated
• On successful return, the child process is reaped

• If child_status != NULL, then the *child_status
value indicates why the child process terminated
• Special macros for interpreting this status – see man
wait(2)

o Note: If parent process has multiple children,
wait will return when any of the children
terminates
• waitpid can be used to wait on a specific child

process

58

L02: Memory & Data IL19: Processes CSE351, Summer 2021

wait: Synchronizing with Children

59

void fork_wait() {
 int child_status;

 if (fork() == 0) {
 printf("HC: hello from child\n");
 exit(0);
 } else {
 printf("HP: hello from parent\n");
 wait(&child_status);
 printf("CT: child has terminated\n");
 }
 printf("Bye\n");
}

printf wait printffork

printf
exit

HP

HC

CT
Bye

forks.c

Feasible output:
HC
HP
CT
Bye

Infeasible output:
HP
CT
Bye
HC

L02: Memory & Data IL19: Processes CSE351, Summer 2021

linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6639 ttyp9 00:00:03 forks
 6640 ttyp9 00:00:00 forks <defunct>
 6641 ttyp9 00:00:00 ps
linux> kill 6639
[1] Terminated
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6642 ttyp9 00:00:00 ps

Example: Zombie

o ps shows child process as
“defunct”

o Killing parent allows child to
be reaped by init

60

void fork7() {
 if (fork() == 0) {
 /* Child */
 printf("Terminating Child, PID =
%d\n",
 getpid());
 exit(0);
 } else {
 printf("Running Parent, PID = %d\n",
 getpid());
 while (1); /* Infinite loop */
 }
}

forks.c

L02: Memory & Data IL19: Processes CSE351, Summer 2021

linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6676 ttyp9 00:00:06 forks
 6677 ttyp9 00:00:00 ps
linux> kill 6676
linux> ps
 PID TTY TIME CMD
 6585 ttyp9 00:00:00 tcsh
 6678 ttyp9 00:00:00 ps

Example:

o Child process still active
even though parent has
terminated

o Must kill explicitly, or else
will keep running indefinitely

61

void fork8() {
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",
 getpid());
 while (1); /* Infinite loop */
 } else {
 printf("Terminating Parent, PID =
%d\n",
 getpid());
 exit(0);
 }
}

forks.c

Non-terminatin
g
Child

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Process Management Summary
o fork makes two copies of the same process (parent &

child)
• Returns different values to the two processes

o exec* replaces current process from file (new program)
• Two-process program:

• First fork()
• if (pid == 0) { /* child code */ } else { /* parent code */

}
• Two different programs:

• First fork()
• if (pid == 0) { execv(…) } else { /* parent code */ }

o wait or waitpid used to synchronize parent/child
execution and to reap child process

62

