W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Virtual Memory |

CSE 351 Summer 2021

Instructor:
Mara Kirdani-Ryan

Teaching Assistants:
Kashish Aggarwal
Nick Durand

Colton Jobes

Tim Mandzyuk

http://www.youtube.com/watch?v=Lyux-sEdlbg

CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

Gentle, Loving Reminders

- hw17 due tonight!
- hw18, 19 due Wednesday (8/11)

* Lots of virtual memory

- Lab 4 due Monday (8/9)

e All about caches!

W UNIVERSITY of WASHINGTON CSE351, Summer 2021

Learning Objectives

Understanding this lecture means you can:

. Explain the purpose of virtual memory, and how
iIndirection is used to achieve abstraction

« Problematize visions of computing grandeurr,
especially around “good intentions”

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Unit 3: Scale, Coherence

« Caches, Process,

Virtual Memory /\
o Multiple programs? o [Javaandc

. CSE154 (Web) |
----------------------- 'Higher than we'll go

Larger programs? e
Scale-Coherence | Processes

« Metrics & Structures T viaiomeny

Memory Allocation

o Scale, Automation Programs 86 Assembly

ED Bﬂ ~..._| Procedures, Stacks
Executables

Arrays, Structs
\ Data d

et Memory, Data
y Integers, Floats

CSE 369 (Gates)

i CSE 371 (Circuits) Deeper than we'll go

........................

YA UNIVERSITY of WASHINGTON L19: Processes

Virtual Memory (VM*)

o Overview and motivation

- VM as a tool for caching

- Address translation

- VM as a tool for memory management
- VM as a tool for memory protection

Warning: Virtual memory is pretty
complex, but crucial for understanding

how processes work and for debugging
performance

*Not to be confused with “Virtual Machine” which is a whole other thing.

CSE351, Summer 2021

W UNIVERSITY of WASHINGTON L19: Processes

Memory Is virtual!

+ Programs refer to virtual memory addresses
" movqg (%rdi), Srax
= Conceptually memoryis just a very large array of bytes
= System provides private address space to each process

- Allocation: Compiler and run-time system

= Where different program objects should be stored
= All allocation within single virtual address space

But...

= We probably don’t have 2% bytes of physical memory

= We certainly don’t have 2% bytes of physical memory
for every process

= Processes should not interfere with one another

OxFF

CSE351, Summer 2021

w UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Problem 1: How Does Everything Fit?

64-bit virtual addresses can address Physical main memory
several exabytes offers
(18,446,744,073,709,551,616 bytes) a few gigabytes

(e.g. 8,589,9384,592 bytes)

(Not to scale; physical memory would be smaller
than the period at the end of this sentence
compared to the virtual address space.)

1 virtual address space per
process, with many processes...

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Problem 2: Memory Management

Physical main memory

We have multiple Each process has. ..

processes:
Process 1 stack
Process 2 heap
Process 3 X fext What goes
I.:;.rocess n -data Ll

W UNIVERSITY of WASHINGTON CSE351, Summer 2021

Problem 3: How To Protect

Physical main memory

Problem 4: How To Share?

Physical main memory

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

How can we solve these problems?

- "Any problem in computer science can be solved by
adding another level of indirection.”

— David Wheeler, inventor of the subroutine

P1 ——

. Without Indirection 2 :;_Thmg
P3 'E NewThing
P1

> With Indirection =
P2 — —»- | | Thing
P3 _

~ NewThing

What if | want to move Thing?

10

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Indirection

(@)

©

Indirection: The ability to reference something using a
name, reference, or container instead of the value itself.
A flexible mapping between a name and a thing allows
changing the thing without notifying holders of the name.
* Adds some work (now have to look up 2 things instead of 1)

* But don'’t have to track all uses of name/address (single source!)

Examples:
* Phone system: cell phone number portability

* Domain Name Service (DNS): translation from name to IP
address

* Call centers: route calls to available operators, etc.

* Dynamic Host Configuration Protocol (DHCP): local network
address assignment

11

w UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Indirection in Virtual Memory

Virtual memory

Process 1

Physical memory

: mapping

Virtual memory

Process n

- Each process gets a private virtual address space
- Solves the previous problems!

12

YA/ UNIVERSITY of WASHINGTON CSE351, Summer 2021

Address Spaces

+ Virtual address space: Set of N = 2" virtual addr
= {0,1,23,.. N-1}

+ Physical address space: Set of M = 2™ physical addr
= {0,1,23,.. M1}

+ Every byte in main memory has:
= one physical address (PA)
= zero, one, or more virtual addresses (VAs)

13

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Mapping

- Avirtual address (VA) can be mapped to either physical
memory or disk
* Unused VAs may not have a mapping

* VAs from different processes may map to same location in
memory/disk

Process 1’s Virtual
Address Space o— Physical
L O Memory
Process 2’s Virtual Disk

Address Space

:Ij“Swap Space”’

14

w UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

A System Using Physical Addressing

Main
0:
1:
Physical address 2:
(PA) 3:
CPU > 4:
> Ox4 5:
6:
7:
8:
M-1:

Data (int/float)

- Used in “simple” systems with (usually) just one
Process:

« Embedded microcontrollers in devices like cars,
elevators, and digital picture frames 15

w UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

A System Using Virtual Addressing

Main
| 0:
CPU Chip Physical -
Virtual address address 2:
(VA) (PA) 3:
CPU > MMU > 4!
X 0x4100 A 04 gf
7:
8:
Memory Management
Unit M-1

Data (int/float)

- Physical addresses are invisible to programs
- Used in all modern desktops, laptops, smartphones...
* “Classic” CS idea, made visible

16

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Why Virtual Memory (VM)?

- Efficient use of limited main memory (RAM)

* Use RAM as a cache for the parts of a virtual address space
- Some non-cached parts stored on disk
- Some (unallocated) non-cached parts stored nowhere

* Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed

- Simplifles memory management for programmers
* Each process “gets” the same full, private linear address space

- Isolates address spaces (protection)

* One process can't interfere with another’s memory
- They operate in different address spaces

* User process cannot access privileged information
- Different sections of address spaces have different permissions

17

W UNIVERSITY of WASHINGTON L19: Processes

CSE351, Summer 2021

VM and the Memory Hierarchy

+ Think of virtual memory as array of N = 2" contiguous bytes

+ Pages of virtual memory are usually stored in physical

memory, but sometimes spill to disk

= Pages are another unit of aligned memory (size is P = 2P bytes)
® Eachvirtual page can be stored in any physical page (no fragmentation!)

Virtual memory Physical memory
0
0 Empty | PPO 3
VPO Unallocated— _> PP 1 — E
2 VP 1 Empty o8
S & LB
o 'DU_) Unallocated \ / Empty c(%;
g Z —> PP (&)
E 2™m-1 2mM-p_4
>
VP Disk
2"P-1

~
RGN j“Swap Space”

18

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

or: VM as DRAM Cache for Disk

« Think of virtual memory as an array of N = 2™ contiguous
bytes stored on a disk

+ Then physical main memory is used as a cache for the
virtual memory array
"= These “cache blocks” are called pages (size is P = 2P bytes)

Virtual Physical

—memorv , memory
VP 0O | Unallocated

VP 1 [Cached T Empty | PPO
Uncached \ PP 1
Unallocated Empty
Cached
Uncached Empty
Cached PP

VP Dncached M-1 2MP-1

20P_1 b .
Virtual pages Physical pages
(VPS) (PPS)

“stored on disk” cached in DRAM
19

CSE351, Summer 2021

L19: Processes

YA/ UNIVERSITY of WASHINGTON

Memory Hierarchy: Core 2 Duo
Not drawn to scale

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
A A
l ~4MB 1 ~8 GB ! ~500 GB
= | 2 Mai .
Y/ L1 ain
. l-cache unified Memory D I S k
O\'(‘(-FLOW&
32 KB S %
5
L1 2} &
CPU Red D-cache % opA/\ &
_ A\ ROCHES*®
Throughput: 16 B/cycle 8 B/cycle | il 2 Bicycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions
> <€ >
Miss Miss
Penalty Penalty
(latency) (latency)
33x 10,000x

20

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Virtual Memory Design Consequences

- Large page size: typically 4-8 KiB or 2-4 MiB
* Can be up to 1 GiB (for “Big Data” apps on big computers)
* Compared with 64-byte cache blocks

- Fully associative
* Any virtual page can be placed in any physical page
* Requires a “large” mapping function — different from CPU caches

- Fancy, expensive replacement algorithms in OS
* Too complicated and open-ended to be implemented in hardware

o Write-back rather than write-through
* Really don’t want to write to disk every time we write to memory

* Some things may never end up on disk (e.g. stack for short-lived

process)
21

W UNIVERSITY of WASHINGTON CSE351, Summer 2021

Why does VM work on RAM/disk?

- Avoids disk accesses because of locality
* Same reason that L1 /L2 / L3 caches work

- oet of virtual pages that a program is “actively”
accessing at any point is called its working set

* If (working set of one process < physical memory).

- Good performance for one process (after compulsory
misses)

* If (working sets of all processes > physical memory).

- Thrashing: Performance meltdown where pages are
swapped between memory and disk continuously
(CPU always waiting or paging)

- Why adding RAM speeds up computer performance

22

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Summary

- Virtual memory provides:

* Ability to use limited memory (RAM) across multiple
processes

* lllusion of contiguous virtual address space for each
process

* Protection and sharing amongst processes

23

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Computing and Vision

What’s your vision for
computing?
Is there a collective vision?

YA/ UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

“To provide free and easy access to a vast
array of knowledge, ideas, and information
by supporting lifelong learning and a love of
reading, so that everyone in our community
is empowered, informed, and enriched.”
Seattle Public Library Mission, 2002

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Go g|e About Products Commitments Stories The Keyword

Our mission is to organize the world’s
information and make it universally accessible
and

Space to belong — a Get-set, go for the Tokyo
celebration of inclusive 2020 Olympics with Google
gathering places Bl o

Explore the experience

27

The difference is scale!
Seattle, versus the world.

UNIVERSITY of WASHINGTON L19: Processes . (CSE351, Summer 2021

What’s the ideological
vision of computing?

UNIVERSITY of WASHINGTON L19: Processes . (CSE351, Summer 2021

Ideology: What’s so
true, that you don’t
even need to ask?

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Go g|e About Products Commitments Stories The Keyword

Our mission is to organize the world’s
information and make it universally accessible
and

Space to belong — a Get-set, go for the Tokyo
celebration of inclusive 2020 Olympics with Google
gathering places Bl o

Explore the experience

31

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

FACEBOOK

W~ o -
7 n
"‘ e
F ‘«

OUR MISSI/ON)

Give people thq
power to build

community and ¢
bring the world
closer together.

Quite literally, not a computer in sight

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

=Eﬂ Microsoft | About Company v People v Values ~ Careers Investor Relations All Microsoft ~ 0O @

Empowering others

Our mission is to empower every person and every organization
on the planet to achieve more.

Quite literally, not a computer in sight

33

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

= damazon
N7

Who We Are Amazon is guided by four principles: customer obsession rather than
competitor focus, passion for invention, commitment to operational
excellence, and long-term thinking. Amazon strives to be Earth's most
customer-centric company, Earth's best employer, and Earth's safest place
to work. Customer reviews, 1-Click shopping, personalized
recommendations, Prime, Fulfillment by Amazon, AWS, Kindle Direct
Publishing, Kindle, Career Choice, Fire tablets, Fire TV, Amazon Echo,
Alexa, Just Walk Out technology, Amazon Studios, and The Climate
Pledge are some of the things pioneered by Amazon.

Again, “Earth’s...”

UNIVERSITY of WASHINGTON L19: Processes . (CSE351, Summer 2021

Vision:
Operating on a global
& universal scale

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

What might this mean?

YA/ UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

“In my very long term worldview, our
software understands deeply what you’re
knowledgeable about, what you’re not, and
how to organize the world so that the world
can solve important problems”

Larry Page, Google Founder, 2013

YA/ UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

“Our greatest opportunities are now global — like
spreading prosperity and freedom, promoting peace
and understanding, lifting people out of poverty, and
accelerating science. Our greatest challenges also
need global responses — like ending terrorism,
fighting climate change, and preventing pandemics.
Progress now requires humanity coming together
not just as cities or nations, but also as a global
community....Iin times like these, the most important
thing we at Facebook can do is develop the social
infrastructure to give people the power to build a
global community that works for all of us.”

Mark Zuckerberg, 2017

Vision:

Operating on a global &
universal scale, with Big
Tech at the helm

SSSSSSSSSSSSSSSSS

W UNIVERSITY of WASHINGTON CSE351, Summer 2021

The ingredients of totalitarianism

» Strong, charismatic idealism

40

YA UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Facebook

COVID-19 vaccinations and news consumption patterns (Copy)
[Percent among respondents who say they got COVID-related news from each source in the past 24 hours]
B Vaccinated [Might get vaccinated [Jj Would not get vaccinated

Multiple Sources, 8
(None of FB/Fox/Newsmax)

7%

Only Biden Administration JAES

Only MSNBC &

o
o~

Only CNN [B&R2

Multiple Sources

% 1
(At least one of FB/Fox/Newsmax) oL : :

o
oy
o
o~

No Provided Sources NivaZ 18% 21%
Only Fox Bk

Only Facebook :¥&%

°
o8

Only Newsmax [2¥e%

National sample, N = 20,669, Time period: 06/09/2021-07/07/2021

Source: The COVID-19 Consortium for Understanding the Public’s Policy Preferences Across States (A joint project of: Northeastern University,
Harvard University, Rutgers University, and Northwestern University) www.covidstates.org * Created with Datawrapper

41

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Amazon

Amazon

14-hour days and1 susiess
breaks: Amazon's Amazon Reportedly Has
deliverydrivers il arton Agents Surveil

e e e Workers Who Try To Form
Unions

November 30, 2020 - 3:51PM ET
Heard on All Things Considered

° 4-Minute Listen 9 0 e

According to documents, Amazon reportedly runs a surveillance program to
track activism among its workers. NPR's Ari Shapiro talks with Lauren Gurley

of Motherboard magazine, who broke the story.

A An Amazon delivery driver loads a van outside of a distribution facility on 2 February 2021 in Hawthorne,
California. Photograph: Patrick T Fallon/AFP/Getty Images 42

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Google

ALGORITRIVS
OPPRESSION

HOW SEARCH ENGINES
REINFORCE RACISM

SAFIYA UMOJA NOBLE

43

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

“Microsoft is trying to steal your data just as
much as Google, they’re just not as popular”

“Everything’s driven by enterprise adoption,
because that’s where the money is. Individuals
aren’t prioritized”

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

I’m sure they mean well...

w UNIVERSITY of WASHINGTON CSE351, Summer 2021

I’m sure they mean well

» Generally, utopia vision from Big Tech Leaders

o “In the future, technology is going to...free us up to
spend more time on the things we all care about, like
enjoying and interacting with each other and
expressing ourselves in new ways” Zuckerberg, 2017

o Eliminate poverty, hunger,

o Fulfil the needs of everyone

« I'm sure they have good intentions
o But, no one has any idea how to operate at scale

46

YA/ UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

VM’s implemented to account for
computing at scale.

Multi-process machines warrant
virtual memory.

If the vision is scale, are we
prepared for the scale that
we look to operate at?

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

“l am here to suggest that you voluntarily renounce
exercising the power which being an American
technologist gives you. | am here to entreat you to freely,
consciously and humbly give up the legal right you have
to impose your benevolence on Mexiee the world. | am
here to challenge you to recognize your inability, your
powerlessness and your incapacity to do the "good"
which you intended to do.

| am here to entreat you to use your money, your status
and your education to travel inatin-Ameriea around the
world. Come to look, come to climb our mountains, to
enjoy our flowers. Come to study. But do not come to
help.”

YA/ UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

You have unprecedented power and
access as technologists.

What would you like to accomplish?
Who do you want to serve?

Ideally, better than “move fast and break things”

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Fork-Exec l and e;iec* should be checked for l

rmouryv

- fork-exec model:
* fork () creates a copy of the current process

* exec* () replaces the current process’ code and
address space with the code for a different program

- Whole family of exec calls — see exec (3) and
// Example arguments: path="/usr/bin/1s",

// argv/[0]="/usr/bin/1s", argv[1]="-ahl", argv/[2]=NULL
void fork exec(char *path, char *argv([]) ({
pid t fork ret = fork();
if (fork ret != 0) {
printf ("Parent: created a child %d\n", fork ret);
} else {

printf ("Child: about to exec a new program\n");
execv (path, argv);

}
printf ("This line printed by parent only!\n");

51

YA/ UNIVERSITY of WASHINGTON

L19: Processes CSE351, Summer 2021

Exec-ing a new program

Stack

Heap

Data

wUUC.

fork ()
parent

Stack

Heap

Data

wUUC.
II |ﬁrlk:nlkf\ﬁl"\
7 TIoTT 17

Ul LLILIA Y4 = S=] 0

Very high-level diagram of
what happens when you run
the command “1s” in a Linux

shell:
Thie ie the |loading part of

child
Stack

exec* ()

Data
Code: /usr/bin/ls

52

YA/ UNIVERSITY of WASHINGTON

L19: Processes

CSE351, Summer 2021

This is extra
execve Example (non-testable
) material
Execute "/usr/bin/ls -1 1lab4"™ in child process using current
environment:
myargv[argc] = NULL
(argc ==) myargv[2] T—> "lab4d"
myargv([l] T—> "-1"
- 1A 2 1A
nyargv Slmyargv (0] —> "/usr/bin/1ls
envp[n] = NULL
envp [n-1] +—> "PWD=/homes/iws/rea"
environ Slenvp (0] T— "USER=rea"
if ((pid = fork()) == 0) { /* Child runs program */

if (execve (myargv[O0],
printf ("%$s:
exit (1)

myargv,
Command not found.\n",

environ) < 0) {

myargv[0]);

Run the printenv command in a Linux shell to see your own environment
variables

53

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Stack Bocttom of This is extra
NG ated (non-testable
Structu re on a environment variable) material
strinas ----
New Prog ram Null-terminated
___.| command-line arg strings |
Start s 5
| envp[n] == NULL E
E envp [n-1] ! environ
| | (global
i envp[0] & _<::: var)
| argvl[argc] = NULL 1 envp
i argv[argc-1] (in $rdx)
TTgv
(in |--------- 1° argv[0]
crot)
dEge Stack frame for
. (in \ libc start main
ordJ_,

Future stack frame for

54

W UNIVERSITY of WASHINGTON CSE351, Summer 2021

exit: Ending a process

o void exit (1int status)
* Explicitly exits a process

. Status code: 0 is used for a normal exit, nonzero for
abnormal exit

o The return statement frommain () also ends a

process in C
* The return value is the status code

55

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Processes

- Processes and context switching

- Creating new processes
* fork (), exec*(),and wait ()
o Zombies

56

YA/ UNIVERSITY of WASHINGTON

Zombies

- Aterminated process still consumes system
resources

* Various tables maintained by OS

* Called a “zombie” (a living corpse, half alive and half
dead)

o Reaping is performed by parent on terminated
child

* Parent is given exit status information and kernel then
deletes zombie child process

- What if parent doesn’t reap?

* If any parent terminates without reaping a child, then

the orphaned child will be reaped by init process (pid
Nnf 1)\

CSE351, Summer 2021

w UNIVERSITY of WASHINGTON CSE351, Summer 2021

wait: Synchronizing with Children

o int walt (int *child status)

* Suspends current process (i.e. the parent) until one of
its children terminates

* Return value is the PID of the child process that
terminated
- On successful return, the child process is reaped

* If child status !=NULL, thenthe *child status
value indicates why the child process terminated

- Special macros for interpreting this status — see man
wait (2)

o Note: If parent process has multiple children,
wait will return when any of the children

. 58
tarminatac

CSE351, Summer 2021

W UNIVERSITY of WASHINGTON L19: Processes

wait: Synchronizing with Children

void fork wait () {
int child status;

if (fork() == 0) {
printf ("HC: hello from child\n");
exit (0);

} else {

printf ("HP: hello from parent\n");
wait (&child status);
printf ("CT: child has terminated\n");

}
printf ("Bye\n") ;

J forks.c
HC exit
~o—————¢
printf Feasible output: Infeasible output:

HC HP

CT HP CT

| . T of Bye

fork pr;.ntf wait printf Bye HC

59

YA/ UNIVERSITY of WASHINGTON

L19: Processes CSE351, Summer 2021

Example:

linux> ./forks 7 &
[1] 6639
Running Parent,
Terminating Child,
linux> ps
PID TTY
6585 ttyp9
6639 ttyp9
6640 ttyp9
ttyp9

00:
00:
00:
00:

6041l
linux> kill 6639

[1] Terminated
linux> ps

PID TTY

6585 ttyp9

6642 ttyp9

PID

void fork7 () {
Zomb| ™ on — o)
/* Child */
printf ("Terminating Child, PID =
%d\n",
getpid());
ex1it (0);
} else {
printf ("Running Parent, PID = %d\n",
getpid());
while (1); /* Infinite loop */
forks.c

PID

TIME

00
00
00
00

:00
:03
:00
:00

6639

6640

CMD

tcsh

forks

forks <defunct>

ps

- ps shows child process as
“defunct”

> Killing parent allows child to
be reaped by init

60

YA/ UNIVERSITY of WASHINGTON

CSE351, Summer 2021

L19: Processes

Example:
Non-terminatin

9
Child

linux> ./forks 8
Terminating Parent,
Running Child, PID =
linux> ps
PID TTY
6585 ttyp9

PID =
6676

TIME
:00:00
:00:00
:00:00 ps

CMD

6676 ttyp9
6677 ttyp9
linux> kill
linux> ps
PID TTY
6585 ttyp9
6678 ttyp9

void fork8 () {
if (fork() == 0) {
/* Child */
printf ("Running Child,
getpid());
(1); /* Infinite loop */

PID = %d\n",

while

} else {

printf ("Terminating Parent,
$d\n",

PID =

getpid());
exit (0) ;
} forks.c

tcsh
forks

6675

- Child process still active
even though parent has
terminated

- Must kill explicitly, or else
will keep running indefinitely

61

W UNIVERSITY of WASHINGTON CSE351, Summer 2021

Process Management Summary

- fork makes two copies of the same process (parent &
child)

* Returns different values to the two processes
- exec* replaces current process from file (new program)

* Two-process program:
- First fork ()
- if (pid == 0) { /* child code "/} else { /" parent code */
}
* Two different programs:
- First fork ()
. if (pid == 0) { execv(...) } else { /" parent code "/}

- walt or waitpid used to synchronize parent/child 62

