
L02: Memory & Data IL19: Processes CSE351, Summer 2021

Processes
CSE 351 Summer 2021

http://xkcd.com/1854/

Instructor: Teaching Assistants:
Mara Kirdani-Ryan Kashish Aggarwal

Nick Durand
Colton Jobs
Tim Mandzyuk

http://xkcd.com/1854/
http://www.youtube.com/watch?v=bTYQLe0wXOA

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Gentle, Loving Reminders

o hw16 due Tonight! hw17 due Friday!
o Lab 4 due Monday (8/9)!

• hw16 should be helpful preparation
• Caches, caches, caches

● Final deadline for US#2 is tomorrow!
○ Today by 8pm for one late day

2

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Learning Objectives
Understanding this lecture means you can:
● Explain the role of exceptions, and one way that

they’re implemented (exception tables)
● Differentiate between synchronous and

asynchronous exceptions, and explain how
systems respond to both

● Explain how we can have multiple processes
running on a single processor, and how we can
create new processes

● Describe the first operating systems, in context
with the first computers, and the first
programmers

3

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Leading Up to Processes
o System Control Flow

• Control flow
• Exceptional control flow
• Asynchronous exceptions (interrupts)
• Synchronous exceptions (traps & faults)

4

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Control Flow
o So far: we’ve seen how the flow of control

changes as a single program executes
o Reality: multiple programs running concurrently

• How does control flow across the many components of
the system?

• In particular: More programs running than CPUs

5

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Control Flow
o Processors do only one thing:

• From startup to shutdown, a CPU simply reads and
executes (interprets) a sequence of instructions

• This sequence is the CPU’s control flow (or flow of
control)

6

<startup>
instr1
instr2
instr3
…
instrn
<shutdown>

Physical control flow

time

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Altering the Control Flow
o Up to now, two ways to change control flow:

• Jumps (conditional and unconditional)
• Call and return
• Both react to changes in program state

o Processor also needs to react to changes in system state
• Unix/Linux user hits “Ctrl-C” at the keyboard
• User clicks on a different application’s window on the screen
• Data arrives from a disk or a network adapter
• Instruction divides by zero
• System timer expires

o Can jumps and procedure calls achieve this?
• No – the system needs mechanisms for “exceptional” control flow!

7

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Java Digression
o Java has exceptions, but they’re something different

• Examples: NullPointerException,
MyBadThingHappenedException, …

• throw statements
• try/catch statements (“throw to youngest matching catch on the

call-stack, or exit-with-stack-trace if none”)

o Java exceptions are for reacting to (unexpected) program
state
• Can be implemented with stack operations and conditional jumps
• A mechanism for “many call-stack returns at once”
• Requires additions to the calling convention, but we already have

the CPU features we need

o System-state changes on previous slide are mostly of a
different sort (asynchronous/external except for
divide-by-zero) and implemented very differently

8

This is extra
(non-testable

) material

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Control Flow
o So far: we’ve seen how the flow of control

changes as a single program executes
o Reality: multiple programs running concurrently

• How does control flow across the many components of
the system?

• In particular: More programs running than CPUs

o Exceptional control flow is the mechanism for:
• Transferring control between processes and OS
• Handling I/O and virtual memory within the OS
• Implementing multi-process apps (shells, web servers)
• Implementing concurrency

9

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Exceptional Control Flow
o Exists at all levels of a computer system

o Low level mechanisms
• Exceptions

• Change in processor’s control flow in response to a system event
(i.e. change in system state, user-generated interrupt)

• Implemented using a combination of hardware and OS software

o Higher level mechanisms
• Process context switch

• Implemented by OS software and hardware timer
• Signals

• Implemented by OS software
• We won’t cover these – see CSE451 and CSE/EE474

10

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Exceptions
o An exception is transfer of control to the operating system

(OS) kernel in response to some event (i.e. change in
processor state)
• Kernel is the memory-resident part of the OS
• Examples: division by 0, page fault, I/O request completes, Ctrl-C

11

User Code
OS Kernel Code

exception
exception processing by
exception handler, then:
• return to current_instr,
• return to next_instr, OR
• abort

current_instr
next_instr

event

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Exceptions
o An exception is transfer of control to the operating system

(OS) kernel in response to some event (i.e. change in
processor state)
• Kernel is the memory-resident part of the OS
• Examples: division by 0, page fault, I/O request completes, Ctrl-C

o How does the system know where to jump to in the OS?
12

User Code
OS Kernel Code

exception
exception processing by
exception handler, then:
• return to current_instr,
• return to next_instr, OR
• abort

current_instr
next_instr

event

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Exception Table

13

0
1
2

...
n-1

Exception
Table

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...
Exception
numbers

This is extra
(non-testable)

material

● A jump table for exceptions (or, Interrupt Vector Table)
○ Each event type has an exception number k
○ k indexes into the exception table
○ Handler k is called each time exception #k occurs

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Exception Table (Excerpt)

14

Exception Number Description Exception Class
0 Divide error Fault
13 General protection fault Fault
14 Page fault Fault
18 Machine check Abort
32-255 OS-defined Interrupt or trap

This is extra
(non-testable)

material

L02: Memory & Data IL19: Processes CSE351, Summer 2021

How are you feeling
about exceptions?

15

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Leading Up to Processes
o System Control Flow

• Control flow
• Exceptional control flow
• Asynchronous exceptions (interrupts)
• Synchronous exceptions (traps & faults)

16

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Asynchronous Exceptions (Interrupts)
o Caused by events external to the processor

• Indicated by setting the processor’s interrupt pin(s) (wire into CPU)
• After interrupt handler runs, the handler returns to “next” instruction

o Examples:
• I/O interrupts

• Hitting Ctrl-C on the keyboard
• Clicking a mouse button or tapping a touchscreen
• Arrival of a packet from a network
• Arrival of data from a disk

• Timer interrupt
• Every few milliseconds, an external timer chip triggers an interrupt
• Used by the OS kernel to take back control from user programs

17

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Synchronous Exceptions
o Caused by events that occur as a result of executing an

instruction:
• Traps

• Intentional: transfer control to OS to perform some function
• Examples: system calls, breakpoint traps, special instructions
• Returns control to “next” instruction

• Faults
• Unintentional but possibly recoverable
• Examples: page faults, segment protection faults, integer

divide-by-zero exceptions
• Either re-executes faulting (“current”) instruction or aborts

• Aborts
• Unintentional and unrecoverable
• Examples: parity error, machine check (hardware failure detected)
• Aborts current program

18

L02: Memory & Data IL19: Processes CSE351, Summer 2021

System Calls
o Each system call has a unique ID number
o Examples for Linux on x86-64:

19

Number Name Description
0 read Read file
1 write Write file
2 open Open file
3 close Close file
4 stat Get info about file
57 fork Create process
59 execve Execute a program
60 _exit Terminate process
62 kill Send signal to

process

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Traps Example: Opening File
o User calls open(filename, options)
o Calls __open function, which invokes system call instruction syscall

20

00000000000e5d70 <__open>:
...
e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall 2
e5d7e: 0f 05 syscall # return value in %rax
e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax
...
e5dfa: c3 retq

User code OS Kernel code

Exception

Open file
Returns

syscall
cmp

⬛ %rax contains syscall
number

⬛ Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

⬛ Return value in %rax
⬛ Negative value is an error

corresponding to negative
errno

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Fault Example: Page Fault w/Swapped
Page
o User writes to memory location
o That portion (page) of user’s memory

is currently swapped out (on disk)

o Page fault handler must load page into physical memory
o Returns to faulting instruction: mov is executed again!

• Successful on second try
21

int a[1000];
int main () {
 a[500] = 13;
}

 80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code OS Kernel code

exception: page fault
Check to see if
page is swapped, if
so, create page and
load into memory

returns

movl
handle_page_fault:

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Fault Example: Invalid Memory
Reference

o Page fault handler detects invalid address
o Sends SIGSEGV signal to user process
o User process exits with “segmentation fault”

22

int a[1000];
int main() {
 a[5000] = 13;
}

 80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process OS

exception: page fault

detect invalid address
movl

signal
process

handle_page_fault:

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Summary
o Exceptions

• Events that require non-standard control flow
• Generated externally (interrupts) or internally (traps and

faults)
• After an exception is handled, 3 potential scenarios:

• Re-execute the current instruction
• Resume execution with the next instruction
• Abort the process that caused the exception

23

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Exception flow,
feeling ok?

24

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Processes
o Processes and context switching
o Creating new processes

• fork(), exec*(), and wait()

25

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Process 1

What is a process?

26

CPU

Registers %rip

Memory

Stack

Heap

Code

Data

Disk

Chrome.exe

It’s an abstraction!

L02: Memory & Data IL19: Processes CSE351, Summer 2021

What is a process?
o Another abstraction in our computer system

• Provided by the OS
• OS uses a data structure to represent each process
• Maintains the interface between the program and the

underlying hardware (CPU + memory)

o What do processes have to do with exceptional
control flow?
• Exceptional control flow is the mechanism the OS uses

to enable multiple processes to run on the same
system

o What is the difference between:
• A processor? A program? A process? 27

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Processes
o A process is an instance of a running program

• “One of the most profound ideas in computer science”
• Not the same as “program” or “processor”

o Process provides each program with two
 key abstractions:
• Logical control flow

• Each program seems to have sole use of CPU
• Provided via context switching

• Private address space
• Each program seems to have sole use of memory
• Provided via virtual memory

28

CPU

Registers

Memory

Stack
Heap

Code
Data

L02: Memory & Data IL19: Processes CSE351, Summer 2021

What is a process?

29

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 2

Process 3

Process 4Process 1
“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

It’s an abstraction!

L02: Memory & Data IL19: Processes CSE351, Summer 2021

What is a process?

30

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 1
“Memory”

Stack
Heap

Code
Data

“CPU”
Registers

Process 2

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

Process 3

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

Process 4

“Memory”
Stack
Heap

Code
Data

“CPU”
Registers

Operating
System

It’s an abstraction!

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Multiprocessing: The Illusion

o Computer runs many processes simultaneously
• Applications for one or more users

• Web browsers, email clients, editors, …
• Background tasks

• Monitoring network & I/O devices
31

CPU

Registers

Memory

Stack
Heap

Code
Data

CPU

Registers

Memory

Stack
Heap

Code
Data …

CPU

Registers

Memory

Stack
Heap

Code
Data

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Multiprocessing: The Reality

o Single CPU executes multiple processes concurrently
• Process executions interleaved, CPU runs one at a time
• Address spaces managed by virtual memory system
• Execution context (register values, stack, …) for other processes

saved in memory 32

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Multiprocessing

o Context switch
1) Save current registers in memory

33

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Multiprocessing

o Context switch
1) Save current registers in memory
2) Schedule next process for execution

34

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Multiprocessing

35

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

❖ Context switch
1) Save current registers in memory
2) Schedule next process for execution
3) Load saved registers and switch address space

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Multiprocessing: The (Modern) Reality

o Multicore processors
• Multiple CPUs (“cores”) on 1 chip
• Share main memory (and some of

the caches)
• Each can execute a separate

process
• Kernel schedules processes to cores

• Still constantly swapping processes 36

CPU

Registers

Memory

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

Stack
Heap

Code
Data

Saved
registers

…

CPU

Registers

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Concurrent Processes
o Each process is a logical control flow
o Two processes run concurrently (are concurrent)

if their instruction executions (flows) overlap in
time
• Otherwise, they are sequential

o Example: (running on single core)
• Concurrent: A & B, A & C
• Sequential: B & C

37

Process A Process B Process C

time

Assume only one
CPU

L02: Memory & Data IL19: Processes CSE351, Summer 2021

User’s View of Concurrency
o Control flows for concurrent processes are

physically disjoint in time
• CPU only executes one process at a time

o However, the user can think of concurrent
processes as executing at the same time, in
parallel

38

Assume only one
CPU

Process
A

Process
B

Process
C

tim
e

Process
A

Process
B

Process
C

User
View

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Context Switching
o Processes are managed by a shared chunk of OS code

called the kernel
• The kernel is not a separate process, but rather runs as part of a

user process

o In x86-64 Linux:
• Same address in each process

refers to same shared
memory location

39

Assume only one
CPU

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Context Switching
o Processes are managed by a shared chunk of OS code

called the kernel
• The kernel is not a separate process, but rather runs as part of a

user process
o Context switch passes control flow from one process to

another and is performed using kernel code

40

Process A Process B

user code

kernel code

user code

kernel code

user code

context
switch

context
switch

time

Exception

Assume only one
CPU

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Context Switching,
feeling ok?

41

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Processes
o Processes and context switching
o Creating new processes

• fork() , exec*(), and wait()
o Zombies

Take OS to learn more!

42

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Process 2

“Memory”

Stack
Heap

Code
Data

“CPU”

Registers

Creating New Processes & Programs

43

Chrome.exe

Process 1

“Memory”

Stack
Heap

Code
Data

“CPU”

Registers

fork()

exec*()

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Creating New Processes & Programs
o fork-exec model (Linux):

• fork() creates a copy of the current process
• exec*() replaces the current process’ code and

address space with the code for a different program
• Family: execv, execl, execve, execle, execvp,
execlp

• fork() and execve() are system calls

o Other system calls for process management:
• getpid()
• exit()
• wait(), waitpid()

44

L02: Memory & Data IL19: Processes CSE351, Summer 2021

fork: Creating New Processes
o pid_t fork(void)

• Creates a new “child” process that is identical to the calling
“parent” process, including all state (memory, registers, etc.)

• Returns 0 to the child process
• Returns child’s process ID (PID) to the parent process

o Child is almost identical to parent:
• Child gets an identical

(but separate) copy of the
parent’s virtual address
space

• Child has a different PID
than the parent

o fork is unique (and often confusing) because it is called
once but returns “twice”

45

pid_t pid = fork();
if (pid == 0) {
 printf("hello from child\n");
} else {
 printf("hello from parent\n");
}

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Understanding fork()

46

Process X (parent; PID X)
pid_t fork_ret = fork();
if (fork_ret == 0) {
 printf("hello from child\n");
} else {
 printf("hello from
parent\n");
}

Process Y (child; PID Y)
pid_t fork_ret = fork();
if (fork_ret == 0) {
 printf("hello from child\n");
} else {
 printf("hello from
parent\n");
}

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Understanding fork()

47

pid_t fork_ret = fork();
if (fork_ret == 0) {
 printf("hello from child\n");
} else {
 printf("hello from
parent\n");
}

pid_t fork_ret = fork();
if (fork_ret == 0) {
 printf("hello from child\n");
} else {
 printf("hello from
parent\n");
}

fork_ret = Y

Process X (parent; PID X)
pid_t fork_ret = fork();
if (fork_ret == 0) {
 printf("hello from child\n");
} else {
 printf("hello from
parent\n");
}

Process Y (child; PID Y)
pid_t fork_ret = fork();
if (fork_ret == 0) {
 printf("hello from child\n");
} else {
 printf("hello from
parent\n");
}

fork_ret = 0

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Understanding fork()

48

pid_t fork_ret = fork();
if (fork_ret == 0) {
 printf("hello from child\n");
} else {
 printf("hello from
parent\n");
}

pid_t fork_ret = fork();
if (fork_ret == 0) {
 printf("hello from child\n");
} else {
 printf("hello from
parent\n");
}

Process X (parent; PID X)
pid_t fork_ret = fork();
if (fork_ret == 0) {
 printf("hello from child\n");
} else {
 printf("hello from
parent\n");
}

Process Y (child; PID Y)
pid_t fork_ret = fork();
if (fork_ret == 0) {
 printf("hello from child\n");
} else {
 printf("hello from
parent\n");
}

hello from parent hello from child

Which one appears first?

fork_ret = Y fork_ret = 0

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Fork Example

o Both processes continue/start execution after fork
• Child starts at instruction after the call to fork (storing into pid)

o Can’t predict execution order of parent and child
o Both processes start with x = 1

• Subsequent changes to x are independent
o Shared open files: stdout is the same in both parent and

child
49

void fork1() {
 int x = 1;
 pid_t fork_ret = fork();
 if (fork_ret == 0) {

printf("Child has x = %d\n", ++x);
 } else {

printf("Parent has x = %d\n", --x);
 }

printf("Bye from process %d with x = %d\n", getpid(), x);
}

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Modeling fork with Process Graphs
o

50

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Fork Example: Possible Output

51

printf--x printffork

Child

Bye
x=1

printf printf++x
Bye

Parent

x=2

x=0

void fork1() {
 int x = 1;
 pid_t fork_ret = fork();
 if (fork_ret == 0) {

printf("Child has x = %d\n", ++x);
 } else {

printf("Parent has x = %d\n", --x);
 }

printf("Bye from process %d with x = %d\n", getpid(), x);
}

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Checking in!
o Are the following sequences of outputs possible?

52

void nestedfork() {
 printf("L0\n");
 if (fork() == 0) {
 printf("L1\n");
 if (fork() == 0) {
 printf("L2\n");
 }
 }
 printf("Bye\n");
}

Seq 2:
L0
Bye
L1
L2
Bye
Bye

Seq 1:
L0
L1
Bye
Bye
Bye
L2

🐶 No No
🐈 No Yes
🐑 Yes No
🦄 Yes Yes
🥶 Help!

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Summary
o Processes

• At any time, system has multiple active processes
• On a one-CPU system, only one can execute at a time,

but each process appears to exclusively use the CPU
• OS periodically “context switches” between processes

• Implemented using exceptional control flow
o Process management

• fork: one call, two returns
• Take OS to learn more about exec() and wait()

53

L02: Memory & Data IL19: Processes CSE351, Summer 2021

The first operating systems

54

L02: Memory & Data IL19: Processes CSE351, Summer 2021

The first computers
o Computer: one who computes

55

The women of Bletchley Park, Credit: BBC

L02: Memory & Data IL19: Processes CSE351, Summer 2021

The first Computer

56

“Great” man
“Great” machine

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Babbage, inspo by Gaspard De Prony
o Applied division of

labor to produce
logarithmic tables

o “…manufacture
logarithms as one
manufactures pins”

o 5 experts, 8
managers, 70 human
computers

57

L02: Memory & Data IL19: Processes CSE351, Summer 2021

The first programmers

58

Jean Jennings (left), Marlyn Wescoff (center), and Ruth
Lichterman program ENIAC at the University of Pennsylvania,
circa 1946.
Photo: Corbis
http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

1940s

http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

L02: Memory & Data IL19: Processes CSE351, Summer 2021

What’s an operating system?
● Basically, a resource manager!
● Computers have all sorts of resources…

○ CPU, memory, disks, network cards, etc.
● Operating systems try to use those efficiently!

○ Ideally, the “user” only worries about their program

● Today: OS abstraction gives multi-process
machines without any change from programmers
○ “Each program seems to have exclusive use of

CPU/memory”

59

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Why this abstraction?
Backwards compatibility! It’s where we started!

60

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Tabulating Cards

61

L02: Memory & Data IL19: Processes CSE351, Summer 2021

A single instruction, via punch card

62

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Programs, via punch card

63

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Computer Operators

64

L02: Memory & Data IL19: Processes CSE351, Summer 2021

First operating systems
● Early computational resources:

○ A very, very expensive machine that could only run
one program at a time

○ Basically just a big, programmable calculator

● Operating computational machines meant:
1. Receive punch card programs from all sorts of people
2. Prioritize and run programs
3. Record results, and return to programmer

● Also, manage the machine if something goes wrong!
○ If a punch card jams the machine
○ If a program doesn’t stop running

65

L02: Memory & Data IL19: Processes CSE351, Summer 2021

“Robot work” or
“Human work”?

66

L02: Memory & Data IL19: Processes CSE351, Summer 2021

What happened?
● Computers slowly added more “features” that

made the operators job easier
○ Security features: allow auditing of programs
○ Magnetic tape allows a digital “queue” that the

computer could select from
● Slowly, operators jobs are automated away…

○ “optional” features become standard
○ “monitors” reassign HW resources as needed

● Good-paying job for women, gone

67

L02: Memory & Data IL19: Processes CSE351, Summer 2021

Summary
● Programs used to be physical stacks of cards

that operators had to manage
● Operators maintained the OS abstraction

○ Potentially with more waiting time and a job queue
○ Viewed as “robot work” -- operating the machine

● Slowly, new computers can “operate themselves”
○ “Great! We won’t need to hire an operator!”

● We’ve seen this before, we’re seeing it now!
○ Computers, Programmers, Operating Systems

68

