

Instructor: Mara Kirdani-Ryan

Teaching Assistants:

Kashish Aggarwal Nick Durand Colton Jobs Tim Mandzyuk

EXAMPLE SHORTCUTS	EFFECT
GMAIL REFRESH BUTTON	REQUESTS UPDATE WITHIN JAVASCRIPT
F5, CTRI-R, #R	REFRESHES PAGE
CTRL-F5, CTRL-①, 光①R	REFRESHES PAGE INCLUDING CACHED FILES
CTRL-①-HYPER-ESC-R-F5	REMOTELY CYCLES POWER TO DATACENTER
CTRL-₩#10#-R-F5-F-5-	INTERNET STARTS OVER FROM ARPANET
	GMAIL REFRESH BUTTON F5, CTRI-R, ¥R CTRI-F5, CTRI-む, ¥ዕR CTRI-む-HYPER-ESC-R-F5 CTRI-ዝ።ዕ#-R-F5-F-5-

Gentle, Loving Reminders

- o hw16 due Tonight! hw17 due Friday!
- Lab 4 due Monday (8/9)!
 - hw16 should be helpful preparation
 - Caches, caches, caches
 - Final deadline for US#2 is tomorrow!
 - Today by 8pm for one late day

Learning Objectives

Understanding this lecture means you can:

- Explain the role of exceptions, and one way that they're implemented (exception tables)
- Differentiate between synchronous and asynchronous exceptions, and explain how systems respond to both
- Explain how we can have multiple processes running on a single processor, and how we can create new processes
- Describe the first operating systems, in context with the first computers, and the first programmers

Leading Up to Processes

- System Control Flow
 - Control flow
 - Exceptional control flow
 - Asynchronous exceptions (interrupts)
 - Synchronous exceptions (traps & faults)

Control Flow

- **So far:** we've seen how the flow of control changes as a *single program* executes
- **Reality:** multiple programs running *concurrently*
 - How does control flow across the many components of the system?
 - In particular: More programs running than CPUs

Control Flow

- Processors do only one thing:
 - From startup to shutdown, a CPU simply reads and executes (interprets) a sequence of instructions
 - This sequence is the CPU's *control flow* (or *flow of control*)

Physical control flow

Altering the Control Flow

- Up to now, two ways to change control flow:
 - Jumps (conditional and unconditional)
 - Call and return
 - Both react to changes in program state

Processor also needs to react to changes in system state

- Unix/Linux user hits "Ctrl-C" at the keyboard
- User clicks on a different application's window on the screen
- Data arrives from a disk or a network adapter
- Instruction divides by zero
- System timer expires
- Can jumps and procedure calls achieve this?
 - No the system needs mechanisms for *"exceptional"* control flow!

Java Digression

- Java has exceptions, but they're something different
 - <u>Examples</u>: NullPointerException, MyBadThingHappenedException, ...
 - throw statements
 - try/catch statements ("throw to youngest matching catch on the call-stack, or exit-with-stack-trace if none")
- Java exceptions are for reacting to (unexpected) program state
 - Can be implemented with stack operations and conditional jumps
 - A mechanism for "many call-stack returns at once"
 - Requires additions to the calling convention, but we already have the CPU features we need
- System-state changes on previous slide are mostly of a different sort (asynchronous/external except for

Control Flow

- **So far:** we've seen how the flow of control changes as a *single program* executes
- **Reality:** multiple programs running *concurrently*
 - How does control flow across the many components of the system?
 - In particular: More programs running than CPUs
- *Exceptional* control flow is the mechanism for:
 - Transferring control between processes and OS
 - Handling I/O and virtual memory within the OS
 - Implementing multi-process apps (shells, web servers)
 - Implementing concurrency

Exceptional Control Flow

- Exists at all levels of a computer system
- Low level mechanisms
 - Exceptions
 - Change in processor's control flow in response to a system event (*i.e.* change in system state, user-generated interrupt)
 - Implemented using a combination of hardware and OS software

• Higher level mechanisms

- Process context switch
 - Implemented by OS software and hardware timer
- Signals
 - Implemented by OS software
 - We won't cover these see CSE451 and CSE/EE474

Exceptions

- An *exception* is transfer of control to the operating system (OS) kernel in response to some *event* (*i.e.* change in processor state)
 - Kernel is the memory-resident part of the OS
 - Examples: division by 0, page fault, I/O request completes, Ctrl-C

Exceptions

- An *exception* is transfer of control to the operating system (OS) kernel in response to some *event* (*i.e.* change in processor state)
 - Kernel is the memory-resident part of the OS
 - Examples: division by 0, page fault, I/O request completes, Ctrl-C

• How does the system know where to jump to in the OS?

Exception Table

- A jump table for exceptions (or, *Interrupt Vector Table*)
 - Each event type has an exception number *k*
 - *k* indexes into the exception table
 - Handler *k* is called each time exception #*k* occurs

Exception Table (Excerpt)

This is extra (non-testable) material

Exception Number	Description	Exception Class
0	Divide error	Fault
13	General protection fault	Fault
14	Page fault	Fault
18	Machine check	Abort
32-255	OS-defined	Interrupt or trap

How are you feeling about exceptions?

Leading Up to Processes

- System Control Flow
 - Control flow
 - Exceptional control flow
 - Asynchronous exceptions (interrupts)
 - Synchronous exceptions (traps & faults)

Asynchronous Exceptions (Interrupts)

- Caused by events external to the processor
 - Indicated by setting the processor's interrupt pin(s) (wire into CPU)
 - After interrupt handler runs, the handler returns to "next" instruction

• Examples:

- I/O interrupts
 - Hitting Ctrl-C on the keyboard
 - Clicking a mouse button or tapping a touchscreen
 - Arrival of a packet from a network
 - Arrival of data from a disk
- Timer interrupt
 - Every few milliseconds, an external timer chip triggers an interrupt
 - Used by the OS kernel to take back control from user programs

Synchronous Exceptions

- Caused by events that occur as a result of executing an instruction:
 - Traps
 - Intentional: transfer control to OS to perform some function
 - Examples: system calls, breakpoint traps, special instructions
 - Returns control to "next" instruction
 - Faults
 - Unintentional but possibly recoverable
 - <u>Examples</u>: page faults, segment protection faults, integer divide-by-zero exceptions
 - Either re-executes faulting ("current") instruction or aborts

Aborts

- Unintentional and unrecoverable
- Examples: parity error, machine check (hardware failure detected)
- Aborts current program

System Calls

- Each system call has a unique ID number
- Examples for Linux on x86-64:

Number	Name	Description
0	read	Read file
1	write	Write file
2	open	Open file
3	close	Close file
4	stat	Get info about file
57	fork	Create process
59	execve	Execute a program
60	_exit	Terminate process
62	kill	Send signal to process

Traps Example: Opening File

- User calls open (filename, options)
- Calls __open function, which invokes system call instruction syscall

Fault Example: Page Fault w/Swapped Page

- Page fault handler must load page into physical memory
- Returns to faulting instruction: mov is executed again!
 - Successful on second try

Fault Example: Invalid Memory Reference

int a[1000];
int main() {
 a[5000] = 13;
}

- Page fault handler detects invalid address
- Sends SIGSEGV signal to user process
- User process exits with "segmentation fault"

Summary

- Exceptions
 - Events that require non-standard control flow
 - Generated externally (interrupts) or internally (traps and faults)
 - After an exception is handled, 3 potential scenarios:
 - Re-execute the current instruction
 - Resume execution with the next instruction
 - Abort the process that caused the exception

Exception flow, feeling ok?

Processes

- Processes and context switching
- Creating new processes
 - fork(), exec*(), and wait()

What is a process?

It's an abstraction!

Chrome.exe

What is a process?

- Another *abstraction* in our computer system
 - Provided by the OS
 - OS uses a data structure to represent each process
 - Maintains the *interface* between the program and the underlying hardware (CPU + memory)
- What do processes have to do with exceptional control flow?
 - Exceptional control flow is the *mechanism* the OS uses to enable **multiple processes** to run on the same system
- What is the difference between:
 - A processor? A program? A process?

Processes

- A **process** is an instance of a running program
 - "One of the most profound ideas in computer science"
 - Not the same as "program" or "processor"
- Process provides each program with two key abstractions:
 - Logical control flow
 - Each program seems to have sole use of CPU
 - Provided via context switching
 - Private address space
 - Each program seems to have sole use of memory
 - Provided via virtual memory

What is a process?

It's an abstraction!

29

What is a process?

It's an abstraction!

Multiprocessing: The Illusion

- Computer runs many processes simultaneously
 - Applications for one or more users
 - Web browsers, email clients, editors, ...
 - Background tasks
 - Monitoring network & I/O devices

Multiprocessing: The Reality

• Single CPU executes multiple processes *concurrently*

- Process executions interleaved, CPU runs one at a time
- Address spaces managed by virtual memory system
- *Execution context* (register values, stack, ...) for other processes saved in memory

Multiprocessing

Context switch

1) Save current registers in memory

Multiprocessing

Context switch

- 1) Save current registers in memory
- 2) Schedule next process for execution

Multiprocessing

Context switch

- 1) Save current registers in memory
- 2) Schedule next process for execution
- **3)** Load saved registers and switch address space

Multiprocessing: The (Modern) Reality

- Share main memory (and some of the caches)
- Each can execute a separate process
 - Kernel schedules processes to cores
- Still constantly swapping processes 36

Concurrent Processes

- Each process is a logical control flow
- Two processes run concurrently (are concurrent) if their instruction executions (flows) overlap in time
 - Otherwise, they are sequential
- Example: (running on single core)

time

- Concurrent: A & B, A & C Process A Process E
- Sequential: B & C

User's View of Concurrency

- Control flows for concurrent processes are physically disjoint in time
 - CPU only executes one process at a time
- However, the user can *think of* concurrent processes as executing at the same time, in *parallel*

Context Switching

- Processes are managed by a *shared* chunk of OS code called the kernel
 - The kernel is not a separate process, but rather runs as part of a user process

Context Switching

- Processes are managed by a *shared* chunk of OS code called the kernel
 - The kernel is not a separate process, but rather runs as part of a user process
- Context switch passes control flow from one process to another and is performed using kernel code

Context Switching, feeling ok?

Processes

- Processes and context switching
- Creating new processes
 - fork() , exec*(), and wait()
- Zombies

Take OS to learn more!

Creating New Processes & Programs

Creating New Processes & Programs

- fork-exec model (Linux):
 - fork() creates a copy of the current process
 - exec*() replaces the current process' code and address space with the code for a different program
 - Family: execv, execl, execve, execle, execvp, execlp
 - fork() and execve() are system calls
- Other system calls for process management:
 - getpid()
 - exit()
 - wait(), waitpid()

fork: Creating New Processes

• pid_t fork(void)

- Creates a new "child" process that is *identical* to the calling "parent" process, including all state (memory, registers, etc.)
- Returns 0 to the child process
- Returns child's process ID (PID) to the parent process

• Child is *almost* identical to parent:

- Child gets an identical (but separate) copy of the parent's virtual address space
- Child has a different PID than the parent

```
pid_t pid = fork();
if (pid == 0) {
    printf("hello from child\n");
} else {
    printf("hello from parent\n");
}
```

 fork is unique (and often confusing) because it is called once but returns "twice"

Understanding fork()

Process Y (child; PID Y)

Understanding fork()

Understanding fork()

Which one appears first?

Fork Example

```
void fork1() {
    int x = 1;
    pid_t fork_ret = fork();
    if (fork_ret == 0) {
        printf("Child has x = %d\n", ++x);
    } else {
        printf("Parent has x = %d\n", --x);
    }
    printf("Bye from process %d with x = %d\n", getpid(), x);
}
```

- Both processes continue/start execution after fork
 - Child starts at instruction after the call to fork (storing into pid)
- Can't predict execution order of parent and child
- Both processes start with x = 1
 - Subsequent changes to \mathbf{x} are independent
- Shared open files: stdout is the same in both parent and child

Modeling fork with Process Graphs

- A process graph is a useful tool for capturing the partial ordering of statements in a concurrent program
 - Each vertex is the execution of a statement
 - a → b means a happens before b
 - Edges can be labeled with current value of variables
 - printf vertices can be labeled with output
 - Each graph begins with a vertex with no inedges
- Any topological sort of the graph corresponds to a feasible total ordering
 - Total ordering of vertices where all edges point from left to right

Fork Example: Possible Output

```
void fork1() {
    int x = 1;
    pid_t fork_ret = fork();
    if (fork_ret == 0) {
        printf("Child has x = %d\n", ++x);
    } else {
        printf("Parent has x = %d\n", --x);
    }
    printf("Bye from process %d with x = %d\n", getpid(), x);
}
```


Checking in!

• Are the following sequences of outputs possible?

Summary

• Processes

- At any time, system has multiple active processes
- On a one-CPU system, only one can execute at a time, but each process appears to exclusively use the CPU
- OS periodically "context switches" between processes
 - Implemented using exceptional control flow
- Process management
 - fork: one call, two returns
 - Take OS to learn more about exec() and wait()

The first operating systems

The first computers

• **Computer**: one who computes

The women of Bletchley Park, Credit: BBC

The first Computer

"Great" man

PORTION OF BABBAGE'S DIFFERENCE ENGINE.

"Great" machine

Babbage, inspo by Gaspard De Prony

- Applied division of labor to produce logarithmic tables
- "…manufacture logarithms as one manufactures pins"
- 5 experts, 8 managers, 70 human computers

The first programmers

Jean Jennings (left), Marlyn Wescoff (center), and Ruth Lichterman program ENIAC at the University of Pennsylvania, circa 1946. Photo: Corbis http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

What's an operating system?

- Basically, a resource manager!
- Computers have all sorts of resources...
 - CPU, memory, disks, network cards, etc.
- Operating systems try to use those efficiently!
 - Ideally, the "user" only worries about their program

- Today: OS abstraction gives multi-process machines without any change from programmers
 - "Each program seems to have exclusive use of CPU/memory"

Why this abstraction? Backwards compatibility! It's where we started!

Tabulating Cards

12 MO 11	4		2	3 X	4	DAY 5 QUA	6 RTEI	• *	8	9	- Miles	2	11.5.	-	5	.UB-	ACC	ī.	1	IND		81	UDGi	ET			DEI	T			CLA	ss	a hard				DEBIT		No. of the second se	128.2			•	REDA	IT		UNIVE
10	d	TYPE		0	REA	ERE O	NCE	0	0	RE	QUIS	() (0	0	0	0	0		0) () (0	0	0	0	•	0	0	0	•	0	0		•	0	0	0	0	0	0	0	0	0	0	OISH
1	1	1	1	•	1	1	1	1	1	1	-11	.1	1	1	1	1	1	1	1		1	- 1		1	1	1	1	1	1	1	1	1	1	1	1	1	•	1	1	1	1	1	1	1	1	1	10
2	2	2 :	2	2	2	2		2		2	12	2 2	2 (2	2	2	2	2	2	2	(2	2	•	2	2	•	•	2	2		2	2	2	2	2	2	2	2	2	2	2	2	2	23
3	13	3 :	3	з	•	3	3	3	3	3	-3	3 3	3 :	3	3	3	3	3	3	3	3	11	3 :	3	3	3	•	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3 NP
•			4	4	4	4	4	0	4	4	4	1 4	4	4	4	4	4	4	4	4	4	. 4	\$ 1	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4		4	4	4	4	4	4	4	401
5	5	5 1	5	5	5	5	5	5	5	5	15	5 5	5	5	5	5	5	5	5	5	5	14	5 !	5	5	5	5	5	5	5	•	5	5	5	5	5	5	5	5	•	5	5	5	5	5	5	5-0
6	6	5	6	6	6	0	6	6	6	6	ie	5 6	5	6	6	6	6	6	6	6	6	. 6	5 1	6	•	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6 MPTR
7	17	7	7	7	7	17	7	7	7	7		0 7	7	7	7	7	7	7	7	7	7	7	7	0	7	7	7	7	7	7	7	7	7	7	7	7	7		7	7	7	7	7	7	7	7	7 TER
8	8	3	8	8	8	8	8	8	8	8	18	3 8	3 1	в	8	8	8	8	8	8	8	1 8	3 1	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8 FORI
9-	0100	2	935	9	9 571	1968	9,7	98	99	910	191		2 1	9	9	915	9	917	9	919	0000	NED	1	9	9	9 24	9 25	9 28	927	9	9 29	9 30	9 5t	932	93	9.34	9.35	9 38	19	9	939	9.4	9	9	9 43	9	945

HOLLERITH TABULATING CARD

Date—April 27, 1927 Quarter—Third Type—40 Invoice Reference—Invoice No. 13624 Requisition No. 20792 (Open) Sub-Acct.—None Fund—01 Support Fund Budget—276 Bacteriology Supplies Department—2302 Medical School—Bacteriology Classification—2502 Chemicals Amount—Debit \$17.45

A single instruction, via punch card

1	1	0	語りた	代し		1	J	5	-1	K	E ST	2	5		U		1		1	đ	1	5	4	1 az	に「	II.	Pro-	:0	F	0	R	J		2	Π	T	U.	00	i i	4	55	Part of the second seco	1	S	2		5	1	E	1	1	22	6	S I		25	2	0		0	1	1	21	1	10		-		15		0		
H			ţ	I			ļ	•	1	ķ				1		ļ	ļ	•			1			1	I					1		1				1										1	I	1									ļ	1						1	•			1	I	Ē			
AR	ų		1	i.	1	Ģ.			1	2	10	G.			1		4	1.2		24	2	14	ā.	15	11	1	i i	E.		-		2	-	a)	6	i.	i i	ni.		14		6	1	10	11	10-1	a î		(iii		14	11	10	R)	9	i.	6	i.	U	ξē.	11		80	h,	ŧ,	11	67	I N	15	in	ī		
DAD							-								-	5																-				20								1																								-					
2.7	2																																																																								
a .	1					17						Ð		9										20																			5													8												1					
	1													1												-												C.8.																								-			1								
ł	100																																																																			16					
	-		1			1			2																				1				9			31																																11		R			
2	1	-	i	Ċ	Ì	1	1	1	1	1	1	I	-		1	:1	1	ĥ	100		8	8	*		I	i,			9	-	101.00	-	1	8	8				ú	1		0	-	1	1	1	1	1	1	1	14	-	1	1	1	1	1	ŋ	I	1	1		A	1	1	1	1	1	1	1	1		
	1	k	1		1	à	3	1	1				-	3	1		1	1	101	-	- 97		0.94		1	ļ		1	1	ar.	1	3	(a)	9	-				ļ			4	-	Line Line	1	9	3.	į,		I	in and	1		1	3	-	1	1	1	3	l	- 19	-			1	1		1	300		2	
1	Ð			1	L	1			1	1	1						1	1	E.					1	L	1	1		I.								1	1	1		L							F	F	J.						1	1	1		1				1	1	1	1						ļ

Programs, via punch card

Computer Operators

First operating systems

- Early computational resources:
 - A very, very expensive machine that could only run one program at a time
 - Basically just a big, programmable calculator
- Operating computational machines meant:
 - 1. Receive punch card programs from all sorts of people
 - 2. Prioritize and run programs
 - 3. Record results, and return to programmer
 - Also, manage the machine if something goes wrong!
 - If a punch card jams the machine
 - If a program doesn't stop running

"Robot work" or "Human work"?

What happened?

- Computers slowly added more "features" that made the operators job easier
 - Security features: allow auditing of programs
 - Magnetic tape allows a digital "queue" that the computer could select from
- Slowly, operators jobs are automated away...
 - "optional" features become standard
 - "monitors" reassign HW resources as needed
- Good-paying job for women, gone

Summary

- Programs used to be physical stacks of cards that operators had to manage
- Operators maintained the OS abstraction
 - Potentially with more waiting time and a job queue
 - Viewed as "robot work" -- operating the machine
- Slowly, new computers can "operate themselves"
 - "Great! We won't need to hire an operator!"
- We've seen this before, we're seeing it now!
 - Computers, Programmers, Operating Systems