YA/ UNIVERSITY of WASHINGTON

L19: Processes

CSE351, Summer 2021

Processes

CSE 351 Summer 2021

Instructor:
Mara Kirdani-Ryan

Teaching Assistants:
Kashish Aggarwal

Nick Durand
Colton Jobs
Tim Mandzyuk

REFRESH TYPE
SOFT REFRESH

NORMAL REFRESH
HARD REFRESH
HARDER REFRESH
HARDEST REFRESH

EXAMPLE SHORTCUTS EFFECT
GMAIL BUTTON | REQUESTS UPDATE WITHIN JAVASCRIPT

F5,CIRR, 38R~ REFRESHES PAGE
CTRLFS, CREQY, ®OR REFRESHES PAGE INCLUDING CACHED FILES
CTRL-{}-HYPER-ESC-R-F5 REMOTELY (YCLES POWER To DATACENTER

CTR:-3 223 #-R-F5-F-5-
http://xkcd.com/1854/

http://xkcd.com/1854/
http://www.youtube.com/watch?v=bTYQLe0wXOA

W UNIVERSITY of WASHINGTON CSE351, Summer 2021

Gentle, Loving Reminders

- hw16 due Tonight! hw17 due Friday!

- Lab 4 due Monday (8/9)!

* hw16 should be helpful preparation
* Caches, caches, caches

. Final deadline for US#2 is tomorrow!
o Today by 8pm for one late day

W UNIVERSITY of WASHINGTON CSE351, Summer 2021

Learning Objectives

Understanding this lecture means you can:

. Explain the role of exceptions, and one way that
they’'re implemented (exception tables)

. Differentiate between synchronous and
asynchronous exceptions, and explain how
systems respond to both

. Explain how we can have multiple processes
running on a single processor, and how we can
create new processes

» Describe the first operating systems, in context
with the first computers, and the first
programmers

YA/ UNIVERSITY of WASHINGTON

Leading Up to Processes

- System Control Flow
* Control flow
* Exceptional control flow
* Asynchronous exceptions (interrupts)
* Synchronous exceptions (traps & faults)

CSE351, Summer 2021

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Control Flow

- So far: we’ve seen how the flow of control
changes as a single program executes
- Reality: multiple programs running concurrently

* How does control flow across the many components of
the system?

* In particular: More programs running than CPUs

W UNIVERSITY of WASHINGTON CSE351, Summer 2021

Control Flow

- Processors do only one thing:

* From startup to shutdown, a CPU simply reads and
executes (interprets) a sequence of instructions

* This sequence is the CPU’s control flow (or flow of
control)
Physical control flow
<startup>
instr,
| instr,
time instr,

instrIn
<shutdown>

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Altering the Control Flow

- Up to now, two ways to change control flow:
* Jumps (conditional and unconditional)
* Call and return
* Both react to changes in program state

- Processor also needs to react to changes in system state
* Unix/Linux user hits “Ctrl-C” at the keyboard

User clicks on a different application’s window on the screen
Data arrives from a disk or a network adapter

Instruction divides by zero

System timer expires

- Can jumps and procedure calls achieve this?
* No — the system needs mechanisms for “exceptional” control flow!

w UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

. . This is extra
Java Digression (non-testable

) material

- Java has exceptions, but they’'re something different

 Examples: NullPointerException,
MyBadThingHappenedException, ...

* throw statements

* tryl/catch statements (“throw to youngest matching catch on the
call-stack, or exit-with-stack-trace if none”)

- Java exceptions are for reacting to (unexpected) program
state
* Can be implemented with stack operations and conditional jumps
* A mechanism for “many call-stack returns at once”

* Requires additions to the calling convention, but we already have
the CPU features we need

- SYystem-state changes on previous slide are mostly of a
different sort (asvnchronous/external except for 8

w UNIVERSITY of WASHINGTON CSE351, Summer 2021

Control Flow

- So far: we’ve seen how the flow of control
changes as a single program executes
- Reality: multiple programs running concurrently

* How does control flow across the many components of
the system?

* In particular: More programs running than CPUs

o Exceptional control flow is the mechanism for:
* Transferring control between processes and OS
* Handling //O and virtual memory within the OS
* Implementing multi-process apps (shells, web servers)
* Implementing concurrency

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Exceptional Control Flow

- Exists at all levels of a computer system

- Low level mechanisms

* Exceptions

- Change in processor’s control flow in response to a system event
(i.e. change in system state, user-generated interrupt)

- Implemented using a combination of hardware and OS software
- Higher level mechanisms
* Process context switch
- Implemented by OS software and hardware timer
* Signals
- Implemented by OS software
- We won'’t cover these — see CSE451 and CSE/EE474

10

W UNIVERSITY of WASHINGTON L19: Processes

CSE351, Summer 2021

Exceptions

- An exception is transfer of control to the operating system

(OS) kernel in response to some event (i.e. change in
processor state)

* Kernel is the memory-resident part of the OS
* Examples: division by 0, page fault, I/O request completes, Ctrl-C

User Code

OS Kernel Code

event——current_instr Y exception >
next_instr exception processing by
\l exception handler, then:
* return to current _instr,

» return to next_instr, OR
« abort

11

W UNIVERSITY of WASHINGTON L19: Processes

CSE351, Summer 2021

Exceptions

- An exception is transfer of control to the operating system

(OS) kernel in response to some event (i.e. change in
processor state)

* Kernel is the memory-resident part of the OS
* Examples: division by 0, page fault, I/O request completes, Ctrl-C

User Code

OS Kernel Code

event—current_instr Y exception >
next_instr exception processing by
\l exception handler, then:
* return to current _instr,

» return to next_instr, OR
« abort

- How does the system know where to jump to in the OS?

12

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

This is extra

Exception Table (non-testable)

material

e A jump table for exceptions (or, Interrupt Vector Table)
o Each event type has an exception number k
o kindexes into the exception table
o Handler k is called each time exception #k occurs

code for
exception handler 0
Exception P
Table :
exception handler 1
o & 7 k
1 ¢ | — " code for
2 Ca exception handler 2
n-1 o
Excer;[ion code for
exception handler n-1
numbers

13

YA/ UNIVERSITY of WASHINGTON

L19: Processes

CSE351, Summer 2021

This is extra
Exception Table (Excerpt) (non-testable)
material

Exception Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-255 OS-defined

Interrupt or trap

14

UNIVERSITY of WASHINGTON L19: Processes . (CSE351, Summer 2021

How are you feeling
about exceptions?

CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

Leading Up to Processes

- System Control Flow
* Control flow
* Exceptional control flow
* Asynchronous exceptions (interrupts)
* Synchronous exceptions (traps & faults)

16

w UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Asynchronous Exceptions (Interrupts)

- Caused by events external to the processor
* Indicated by setting the processor’s interrupt pin(s) (wire into CPU)
* After interrupt handler runs, the handler returns to “next” instruction

- Examples:

* 1/O interrupts
- Hitting Ctrl-C on the keyboard
- Clicking a mouse button or tapping a touchscreen
- Arrival of a packet from a network
- Arrival of data from a disk

* Timer interrupt
- Every few milliseconds, an external timer chip triggers an interrupt
- Used by the OS kernel to take back control from user programs

17

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Synchronous Exceptions

- Caused by events that occur as a result of executing an
Instruction:
* Traps
- Intentional: transfer control to OS to perform some function

- Examples: system calls, breakpoint traps, special instructions
- Returns control to “next” instruction

* Faults
- Unintentional but possibly recoverable

- Examples: page faults, segment protection faults, integer
divide-by-zero exceptions

- Either re-executes faulting (“current”) instruction or aborts
* Aborts
- Unintentional and unrecoverable

- Examples: parity error, machine check (hardware failure detected)
- Aborts current program

18

YA/ UNIVERSITY of WASHINGTON

L19: Processes

CSE351, Summer 2021

System Calls

- Each system call has a unique ID number

- Examples for Linux on x86-64:

Number Name

0 read
1 write
2 open
3 close
4 stat
o7 fork
59 execve
60 _exit
62 kill

Description

Read file

Write file

Open file

Close file

Get info about file
Create process
Execute a program
Terminate process

Send signal to
process

19

w UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Traps Example: Opening File

o Usercalls open(filename, options)
- Calls __ open function, which invokes system call instruction syscall

00000000000e5d70 < open>:
e5d79: b8 02 00 00 00 mov S$0x2,%eax # open is syscall 2
ebd7e: 0f 05 syscall # return value in %rax
e5d80: 48 3d 01 fO ff ff cmp SOXfffffffffffff00l,%rax
ebdfa: c3 retq
User code OS Kernel code < +55 contains syscall
number
Exception s Other arguments in $rdi,
syscall Y > .
cmp _ $rsi, Srdx, 3rl1l0, $r8, $r9
Open file :
= Returnvalue in $rax
Returns _ _
= Negative value is an error

corresponding to negative

errno 20

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Fault Example: Page Fault w/Swapped
Page

- User writes to memory location int a[10007];
- That portion (page) of user's memory int r;ggn 0 1;
is currently swapped out (on disk) \ al>00) = 43

80483b7: c¢7 05 10 94 04 08 0d movl $0xd, 0x8049d10

User code OS Kernel code

exception: page fault handle page fault:

Check to see if
page is swapped, if
So, create page and
\J load info memory

movl

returns

- Page fault handler must load page into physical memory
- Returns to faulting instruction: mov is executed again!
* Successful on second try

21

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Fault Example: Invalid Memory
Reference

int a[1000];
int main() {

al5000] = 13;
}

80483b7: c¢7 05 60 €3 04 08 0d movl $0xd, 0x804e360

User Process oS

o l exception: page fault . andie page fault:

. detect invalid address
signal

process

- Page fault handler detects invalid address
- Sends SIGSEGV signal to user process

- User process exits with “segmentation fault”
22

W UNIVERSITY of WASHINGTON CSE351, Summer 2021

Summary

- EXxceptions
* Events that require non-standard control flow

* Generated externally (interrupts) or internally (traps and
faults)

* After an exception is handled, 3 potential scenarios:
- Re-execute the current instruction
- Resume execution with the next instruction
- Abort the process that caused the exception

23

UNIVERSITY of WASHINGTON L19: Processes . (CSE351, Summer 2021

Exception flow,
feeling ok?

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Processes

o Processes and context switching
- Creating new processes
e fork (), exeer{r—antwatrttr

25

YA/ UNIVERSITY of WASHINGTON

What is a process?

Disk

L19: Processes

-
Process 1

Chrome.exe

Memory

Stack

Heap

Data

Code

CPU

Registers | srip

~\

CSE351, Summer 2021

It's an abstraction!

26

W UNIVERSITY of WASHINGTON CSE351, Summer 2021

What is a process?

- Another abstraction in our computer system
* Provided by the OS
* OS uses a data structure to represent each process
* Maintains the interface between the program and the
underlying hardware (CPU + memory)

- What do processes have to do with exceptional
control flow?

* Exceptional control flow is the mechanism the OS uses
to enable multiple processes to run on the same
system

- What is the difference between:
* A processor? A program? A process? 27

YA/ UNIVERSITY of WASHINGTON

L19: Processes

Processes

CSE351, Summer 2021

- A process is an instance of a running program
* “One of the most profound ideas in computer science”

* Not the same as “program” or “processor”

- Process provides each program with two
key abstractions:

* Logical control flow

- Each program seems to have sole use of CPU
- Provided via context switching

* Private address space

Memory

Stack

Heap

Data

Code

CPU

Registers

- Each program seems to have sole use of memory

- Provided via virtual memory

28

YA/ UNIVERSITY of WASHINGTON

L19: Processes

What is a process?

CSE351, Summer 2021

It's an abstraction!

Computer

Process 2

“MemOf’y"

Stack
Heap
Data
Code

“CPU”

Process 1

“CPU!!

Process 3

“CPU”

CPU

Process 4

“MemOf’y”

Stack
Heap
Data
Code

HCPU”

Disk

/Applications/

Chrome.exe

Slack.exe

PowerPoint.exe

YA/ UNIVERSITY of WASHINGTON

L19: Processes

What is a process?

CSE351, Summer 2021

It's an abstraction!

Computer
P Process 3
Process 2
“Memory” ‘
ea
Datg ‘cPU” “Memory”
Code Stack
; " Heap
CPU Data
Code
“CPU” “CPU”
:
Operating
System
CPU
Disk —
/Applications/
Chrome.exe Slack.exe PowerPoint.exe

YA/ UNIVERSITY of WASHINGTON

Multiprocessing: The lllusion

Memory

Stack

Memory

Heap

Stack

Data

Heap

Data

Code

Code

CPU

Registers

CPU

Registers

L19: Processes

Memory

Stack

Heap

Data

Code

CPU

Registers

CSE351, Summer 2021

- Computer runs many processes simultaneously
* Applications for one or more users

- Web browsers, emaill clients, editors, ...

* Background tasks
- Monitoring network & 1/O devices

31

L19: Processes CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

Multiprocessing: The Reality

Memory
: Stack Stack Stack
Heap Heap Heap
Data Data Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU
Registers

- oingle CPU executes multiple processes concurrently

* Process executions interleaved, CPU runs one at a time
* Address spaces managed by virtual memory system

* Execution context (register values, stack, ...) for other processes
saved in memory

32

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Multiprocessing
Memory
Stack Stack Stack
Heap Heap Heap
Data Data 505 Data
Code : Code Code
Saved Saved Saved
registers : registers registers
it
CPU
Registers

- Context switch
1) Save current registers in memory

33

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Multiprocessing
Memory
Stack Stack Stack
Heap Heap Heap
Data : Data 505 Data
Code Code : Code
Saved . | Saved Saved
registers - | registers : registers
CPU
Registers

- Context switch
1) Save current registers in memory
2) Schedule next process for execution

34

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Multiprocessing
Memory
Stack Stack Stack
Heap Heap Heap
Data : Data 505 Data
Code Code : Code
Saved . | Saved Saved
registers - | registers : registers
—
CPU
Registers

+ Context switch
1) Save current registers in memory
2) Schedule next process for execution
3) Load saved registers and switch address space

35

YA/ UNIVERSITY of WASHINGTON

L19: Processes CSE351, Summer 2021

Multiprocessing: The (Modern) Reality

Memory

Stack Stack Stack

Heap Heap Heap

Data Data Data

Code Code Code

Saved Saved Saved
registers registers registers

CPU CPU 1. Multicore processors

Registers Registers | |-

* Multiple CPUs (“cores”) on 1 chip

* Share main memory (and some of
the caches)

* Each can execute a separate
process
- Kernel schedules processes to cores
- Still constantly swapping processes ;

CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

Assume only one
CPU

Concurrent Processes

- Each process is a logical control flow

- Two processes run concurrently (are concurrent)
if their instruction executions (flows) overlap in
time
* Otherwise, they are sequential

- Example: (running on single core)
* Concurrent: A&B,A& C processa Process B Process C
* Sequential: B&C | o

time

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Assume only oneJ

User’s View of Concurrency[oPU

- Control flows for concurrent processes are
physically disjoint in time
* CPU only executes one process at a time

- However, the user can think of concurrent
processes as executing at the same time, in

parallel
Process Process Process Process Process Process
1\ B C 1\ B C

time

38

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

[Assume only one]
CPU

Context Switching

- Processes are managed by a shared chunk of OS code
called the kernel

* The kernel is not a separate process, but rather runs as part of a

uSer process
———————— Memory
Kemel virtual memory T invisible to
0xFFFF FFFF FFFF user code

. User stack
o In x86-64 Linux: (roatod 4t ron Hine}

T %rsp (stack pointer)

 Same address in each process \
refers to same shared Memory mapped region for
memory |OCati0n shared libraries

I

Run-time heap
(created at run time by malloc)

Read/write data
Loaded from the

executable file

Read-only code and data

0x0000 0040 0000

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Assume only one
CPU

Context Switching

- Processes are managed by a shared chunk of OS code
called the kernel

* The kernel is not a separate process, but rather runs as part of a
user process

- Context switch passes control flow from one process to
another and is performed using kernel code

Process A : Process B
user code
kernel code } context
time switch
user code
kernel code } context
switch

user code

40

UNIVERSITY of WASHINGTON L19: Processes . (CSE351, Summer 2021

Context Switching,
feeling ok?

CSE351, Summer 2021

YA UNIVERSITY of WASHINGTON L19: Processes

Processes

- Processes and context switching
- Creating new processes

* fork () rexec*{antdwatt
- Zombies

Take OS to learn more!

42

CSE351, Summer 2021

L19: Processes

YA/ UNIVERSITY of WASHINGTON

Creating New Processes & Programs

Process 1 Process 2
“Memory” “Memory”
Stack Stack
Heap fork () Heap
Data Data
Code Code
“CPU” “CPU”
Registers ? Registers
exec™* ()

[Chrome.exe]

43

w UNIVERSITY of WASHINGTON CSE351, Summer 2021

Creating New Processes & Programs

- fork-exec model (Linux):
* fork () creates a copy of the current process

* exec* () replaces the current process’ code and
address space with the code for a different program

- Family: execv, execl, execve, execle, execvp,
execlp

* fork () and execve () are system calls

- Other system calls for process management:
* getpid()
* exit ()

* walit (), waltpid()

44

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

fork: Creating New Processes

o pid _t fork(void)

* Creates a new “child” process that is identical to the calling
“parent” process, including all state (memory, registers, etc.)

* Returns 0 to the child process
* Returns child’s process ID (PID) to the parent process

- Child is almost identical to parent:

* Child gets an identical pid t pid = fork();
(but separate) copy of the | if (pid == 0) {
parent’s virtual address printf ("hello from child\n");
space } else {

. : : printf ("hello from parent\n");
Child has a different PID \

than the parent

- fork is unique (and often confusing) because it is called
once but returns “twice”

45

YA/ UNIVERSITY of WASHINGTON

L19: Processes

CSE351, Summer 2021

Understanding fork ()

»

Process X

(parent; PID X)

if

pid t fork ret =

fork () ;

(fork ret == 0) ({

printf ("hello from child\n");
} else {

printf ("hello from

parent\n") ;

!

»

Process Y (child; PID Y)

pid t fork ret = fork();
if (fork ret == 0) ({

} else {
printf ("hello from
parent\n") ;

printf ("hello from child\n");

1

46

YA/ UNIVERSITY of WASHINGTON

L19: Processes

CSE351, Summer 2021

Understanding fork ()

»

Process X

(parent; PID X)

if

pid t fork ret =

fork () ;

(fork ret == 0) {

printf ("hello from child\n");
} else {

printf ("hello from

parent\n") ;

!

fork ret=Y

if

pid t fork ret =

fork () ;
(fork ret == 0) {
printf ("hello from child\n");

} else {

printf ("hello from

parent\n") ;

!

»

Process Y (child; PID Y)

pid t fork ret =
if (fork ret

fork () ;
== U} {

} else {
printf ("hello from
parent\n") ;

printf ("hello from child\n");

}
fork ret=20

pid t fork ret = fork();
if (fork ret == 0) {

printf ("hello from child\n");
} else {

printf ("hello from
parent\n") ;

!

47

YA/ UNIVERSITY of WASHINGTON

L19: Processes

CSE351, Summer 2021

Understanding fork ()

Process X (parent; PID X)

pid t fork ret fork() ;
if (fork ret == 0) {

»

} else {
printf ("hello from
parent\n") ;

printf ("hello from child\n");

»

}
fork ret=Y

pid t fork ret fork () ;
if (fork ret == 0) {

printf ("hello from child\n");
} else {

printf ("hello from
parent\n") ;

I
hello from parent

Process Y (child; PID Y)

pid t fork ret fork ()
if (fork ret == 0) ({

} else {
printf ("hello from
parent\n") ;

printf ("hello from child\n");

}
fork ret=20

pid t fork ret fork () ;
if (fork ret == 0) {

printf ("hello from child\n");
} else {

printf ("hello from

parent\n") ;

¥
hello from child

Which one appears first?

48

w UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Fork Example

void forkl () {

int x = 1;
pid t fork ret = fork();
if (fork ret == 0) {
printf ("Child has x = %$d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x);

}
printf ("Bye from process %d with x = %d\n", getpid(), x);

}

- Both processes continue/start execution after fork

* Child starts at instruction after the call to fork (storing into pid)
- Can’t predict execution order of parent and child
- Both processes start with x = 1

* Subsequent changes to x are independent

- Shared open files: stdout is the same in both parent and
child

49

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Modeling fork with Process Graphs

s A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program

= Each vertex is the execution of a statement
" a — b means a happens before b

= Edgescan be labeled with current value of variables
= printf vertices can be labeled with output

= Each graph begins with a vertex with no inedges

» Any topological sort of the graph corresponds to a feasible
total ordering
= Total ordering of vertices where all edges point from left to right

50

W UNIVERSITY of WASHINGTON L19: Processes

Fork Example: Possible Output

CSE351, Summer 2021

void forkl () {

int x = 1;
pid t fork ret = fork();
if (fork ret ==) |
printf ("Child has x = %$d\n", ++x);
} else {
printf ("Parent has x = %d\n", --x);

}

printf ("Bye from process %d with x = %$d\n", getpid(),

X);

x=2 Child Bxe
@ —@— —
++x printf printf
x=0 Parent Bye
o —0— — —@— —
x=1 fork --X printf printf

51

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Checking in!

- Are the following sequences of outputs possible?
Seq 1: Seq 2:

void nestedfork () { 7.0 LO
printf ("LO\n") ;
if (fork() == 0) { L1 Bye
printf ("L1I\n"); Bye L1
if (fork() == 0) {
printf ("L2\n") ; Bye L2
} J Bye Bye
printf ("Bye\n") ; L2 Bye
: ..
’%
%7 No Yes
#> Yes No
¥
% Yes Yes

(\.T.) 52

w UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Summary

- Processes
* At any time, system has multiple active processes

* On a one-CPU system, only one can execute at a time,
but each process appears to exclusively use the CPU

* OS periodically “context switches” between processes
- Implemented using exceptional control flow

- Process management
* fork: one call, two returns
 Take OS to learn more about exec () and wait ()

53

The first operating systems

YA/ UNIVERSITY of WASHINGTON CSE351, Summer 2021

The first computers

- Computer: one who computes

[A oo
S

The women of Bletchley Park, Credit: BBC

55

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

The first Computer

AT

"M I'CALCUL

| “conrieTe
E i

1

11 G r e at” m a n . PORTION OF nAlan::‘s DIFFERENCE ENGINE. .
Great” machine

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Babbage, inspo by Gaspard De Prony

- Applied division of
labor to produce
logarithmic tables

- ...manufacture
logarithms as one
manufactures pins”

- O experts, 8
managers, 70 human
computers

57

YA/ UNIVERSITY of WASHINGTON L19: Processes

The first programmers

CSE351, Summer 2021

Jean Jennings (left), Marlyn Wescoff (center), and Ruth

Lichterman program ENIAC at the University of Pennsylvania,
circa 1946.

Photo: Corbis
http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

58

http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

What’s an operating system?

Basically, a resource manager!

Computers have all sorts of resources...

o CPU, memory, disks, network cards, etc.
Operating systems try to use those efficiently!
o Ideally, the “user” only worries about their program

Today: OS abstraction gives multi-process
machines without any change from programmers

o “Each program seems to have exclusive use of
CPU/memory”

59

Why this abstraction?

Backwards compatibility! It’s where we started!

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Tabulating Cards

DAY :

/4?234 6 @8 9|l ; :
MO. QUARTER : SUB=ACCT, | FUKD BUBGEY l DEPT CLASS oEBIT CRENNT 2
no@ x|t 2 @4x0f (@ : M |

TYPE | REFERENCE REQUISITION ! a |
10{0 @0 mooooOoooooooOo.oooho.oPo.op.'oomooomoomog<
prges RN AT Tl SRS e S e S S i PN VI SR | STEORCSOSIB O ST i, TS SSRGSt S LS e Jo = -
111@1p1111h1111111.111111111111111011111H11h13

: R
22222&0202920&222222022022.@22.22;222222@22&2;
I H 1 I ! Z
3333.@3333&3333333333333033333333@333333&33&35
“““’"'-’ ---------- R R it e R WK S R e el e i e oA it im o Tt 300 Leniy e :'-"-U)
& 444m4QM4m4444444444444444444444%449444M44443
) 1 I i i
5555555555&55555555555555555.5555%55505555555Z
1 - 1 1 : ! o
6§666:‘6666:666666666666.66666666'66“666:66,66:666?66:;-1'
=%} \torlin il = oottt Pl o e e e B e e L e == S T T ARG R G, oD
77777ﬂ7777ﬂ7777777777.7b777777777ﬁ7.ﬂ77/777772
| : { ! | i ! 1 e
88388@8888maeasssasessagasaaseakaansmsasmsswsg
1 | ; ' I | y : =
99 9/9 919 9 9|9 9lo@alo 9 99laaloggainaogloonoalasioggingnigaiogg aigan
I 2 3 6 7 8 9 10 M 12 13 14 15 6 17 18 19 20 21 22 23 24 2528 27 29 28 3 A 8 9 40 41 42 43 44 45
50418 Rt S iy
HOLLERITH TABULATING CARD
Date—April 27, 1927 Requisition No. 20792 (Open) Department A)_;(»z Medical School-—Bacteriology
Quarter—Third Sub-Acct.—None Classification-—23502 Chemicals
Type—40 Invoice Fund-—o01 Support Fund Amount—Debit $17.45
Reference—Invoice No. 13624 Budget-—-276 Bacteriology Supplies

61

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

A single instruction, via punch card

. v % . T " -9
(112330017 Rl ERA

62

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Programs, via punch card

G

63

W UNIVERSITY of WASHINGTON L19: Processes CSE351, Summer 2021

Computer Operators

W UNIVERSITY of WASHINGTON CSE351, Summer 2021

First operating systems

. Early computational resources:
o Avery, very expensive machine that could only run
one program at a time
o Basically just a big, programmable calculator

e Operating computational machines meant:
1. Receive punch card programs from all sorts of people
2 . Prioritize and run programs
3. Record results, and return to programmer
e Also, manage the machine if something goes wrong!
o If a punch card jams the machine

o If a program doesn’t stop running

65

UNIVERSITY of WASHINGTON L19: Processes . (CSE351, Summer 2021

“Robot work” or
“Human work”?

w UNIVERSITY of WASHINGTON CSE351, Summer 2021

What happened?

» Computers slowly added more “features” that
made the operators job easier
o Security features: allow auditing of programs

o Magnetic tape allows a digital “queue” that the
computer could select from

» Slowly, operators jobs are automated away...
o “optional” features become standard
o “monitors” reassign HW resources as needed

. Good-paying job for women, gone

67

w UNIVERSITY of WASHINGTON CSE351, Summer 2021

Summary

« Programs used to be physical stacks of cards
that operators had to manage

. Operators maintained the OS abstraction
o Potentially with more waiting time and a job queue
o Viewed as “robot work” -- operating the machine

. Slowly, new computers can “operate themselves”
o “Great! We won’t need to hire an operator!”

. We've seen this before, we're seeing it now!
o Computers, Programmers, Operating Systems

68

