
L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Caches II
CSE 351 Summer 2021

Instructor:
Mara Kirdani-Ryan

Teaching Assistants:
Kashish Aggarwal
Nick Durand
Colton Jobs
Tim Mandzyuk

http://www.youtube.com/watch?v=9Jz706sJMjg

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Gentle, Loving Reminders

o hw14 due tonight! hw15 due monday!
• No homework due Friday!

o Lab 3 due Friday (7/30)

o Unit Summary 2 Due next Monday (8/2)
• Critique today!
• Task #3 is out -- you’ll look at some assembly

2

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Feedback on Unit
Summaries? Come talk!

3

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Learning Objectives
Understanding this lecture means that you can:
● Explain the benefits of a memory hierarchy to

someone that hasn’t taken this course
● Define cache terminology:

○ Block size vs Cache size; block number vs offset
○ Sets, associativity, tags

● Differentiate between direct-mapped,
associative, and fully-associative caches

● Give & receive unit summary feedback!

4

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Memory Hierarchies
o Some fundamental and enduring properties of

hardware and software systems:
• Faster storage technologies almost always cost more

per byte and have lower capacity
• The gaps between memory technology speeds are

widening
• True for: registers ↔ cache, cache ↔ DRAM,

DRAM ↔ disk, etc.
• “Average” programs tend to exhibit good locality

5

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Memory Hierarchies

o If you’re trying to make things faster, you might
end up with a memory hierarchy
• For each level k, the faster, smaller device at level k

serves as a cache for the larger, slower device at level
k+1

6

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

An Example Memory Hierarchy

7

registers
on-chip L1

cache
(SRAM)

main
memory
(DRAM)

local secondary
storage

(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web

servers)

Local disks hold files
retrieved from disks on
remote network servers

Main memory holds disk
blocks retrieved from local
disks

off-chip L2
cache

(SRAM)

L1 cache holds cache blocks retrieved from
L2 cache

CPU registers hold words retrieved from L1
cache

L2 cache holds cache blocks
retrieved from main memory

Smaller,
faster,
costlier
per byte

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

An Example Memory Hierarchy

8

registers
on-chip L1

cache
(SRAM)

main
memory
(DRAM)

local secondary
storage

(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web

servers)

off-chip L2
cache

(SRAM)

explicitly
program-controlled (e.g.
refer to exactly %rax, %rbx)

Smaller,
faster,
costlier
per byte

program sees “memory”;
hardware manages caching

transparently

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

An Example Memory Hierarchy

9

registers

on-chip L1
cache

(SRAM)

main
memory
(DRAM)

local secondary
storage

(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web

servers)

off-chip L2
cache

(SRAM)

Smaller,
faster,
costlier
per byte

<1
ns

1
ns

5-10
ns

100
ns

150,000
ns

10,000,000
ns

(10 ms)

1-150
ms

SSD

Disk

5-10 s

1-2
min

5-10 min

6 months? Ish?

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Intel Core i7 Cache Hierarchy

10

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 3

…

L3 unified cache
(shared by all cores)

Main memory

Processor package
Block size:
64 bytes for all caches

L1 i-cache and
d-cache:

32 KiB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KiB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MiB, 16-way,
Access: 30-40
cycles

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

That’s the memory
hierarchy!
Feeling ok?

11

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Making memory accesses fast!
o Cache basics
o Principle of locality
o Memory hierarchies
o Cache organization

• Direct-mapped (sets; index + tag)
• Associativity (ways)
• Replacement policy
• Handling writes

o Program optimizations that consider caches

12

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Cache Organization (1)
o

13

Note: The textbook
uses “B” for block size

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Cache Organization (1)
o

14

Block Number Block Offset

Note: The textbook
uses “b” for offset bits

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Checking in!
If we have 6-bit addresses and block size K=4B,
which block & byte does 0x15 refer to?

Block Num Block Offset
🐶 1 1
🐈 1 5
🐑 5 1
🦄 5 5
🥶 Help!

15

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Checking in!
If we have 6-bit addresses and block size K=4B,
which block & byte does 0x15 refer to?
0x15 = 0001 0101

Block Num Block Offset
🐶 1 1
🐈 1 5
🐑 5 1
🦄 5 5
🥶 Help!

16

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Cache Organization (2)
o

17

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Review: Hash Tables for Fast Lookup

18

0
1
2
3
4
5
6
7
8
9

Insert:
5

27
34

102
119

Apply hash function to map
data to “buckets”

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Place Data in Cache by Hashing
Address

o

19

Block Num Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Block Data
00
01
10
11

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Place Data in Cache by Hashing
Address

o Map to cache index from
block number
• Lets adjacent blocks fit in

cache simultaneously!
• Consecutive blocks go in

consecutive cache indices

20

Block Num Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Block Data
00
01
10
11

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Place Data in Cache by Hashing
Address

o Collision!
• This might confuse the cache

later when we access the data
• Solution?

21

Block Num Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Block Data
00
01
10
11

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Tags Differentiate Blocks in Same
Index

o

22

Block Num Block Data
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory Cache
Index Tag Block Data
00 00
01
10 01
11 01

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Checking for a Requested Address
o

23

Block Number

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Checking for a Requested Address
Example

24

Block Number

2

3

3

Index = 110

0xBA = 1011 1010; Tag = 101

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Checking in, caches!

o Based on the following behavior, which of the
following block sizes is NOT possible for our
cache?
• Cache starts empty, also known as a cold cache
• Access (addr: hit/miss) stream:

• (1410: miss), (1510: hit), (1610: miss)
🐶 4 bytes
🐈 8 bytes
🐑 16 bytes
🦄 32 bytes
🥶 Help!

25

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Direct-Mapped Cache Problem

o What happens if we access
the following addresses?
• 8, 24, 8, 24, 8, …?
• Conflict in cache (misses!)
• Rest of cache goes unused

o Solution?
26

Block Num Block Data
00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

Memory Cache
Index Tag Block Data
00 ??
01 ??
10
11 ??

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Associativity
o What if we could store data in any place in the cache?

• More complicated hardware = more power consumed, slower
o So we combine the two ideas:

• Each address maps to exactly one set
• Each set can store block in more than one way

27

0
1
2
3
4
5
6
7

0

1

2

3

0

1

1-way:
8 sets,

1 block each

2-way:
4 sets,

2 blocks each

4-way:
2 sets,

4 blocks each

0

8-way:
1 set,

8 blocks

direct-mapped fully
associative

Set Set Set

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Cache Organization (3)
o

28

Decreasing associativity
Fully
associative
(only one set)

Direct mapped
(only one way)

Increasing
associativity

Selects the
set

Used for tag
comparison

Selects the byte from
block

Note: The textbook
uses “b” for offset bits

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Example Placement
o Where would data from

address 0x1833 be placed?
• Binary: 0b 0001 1000 0011 0011

29

block
size: 16 B

capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Example Placement
o Where would data from

address 0x1833 be placed?
• Binary: 0b 0001 1000 0011 0011

30

block
size: 16 B

capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3 0x30
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way set associative 4-way set associative

 s=3

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Example Placement
o Where would data from

address 0x1833 be placed?
• Binary: 0b 0001 1000 0011 0011

31

block
size: 16 B

capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3 0x30
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3 0x30

Set Tag Data

0

1

2-way set associative 4-way set associative

 s=3 s=2

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Example Placement
o Where would data from

address 0x1833 be placed?
• Binary: 0b 0001 1000 0011 0011

32

block
size: 16 B

capacity: 8 blocks
address: 16 bits

Set Tag Data
0
1
2
3 0x30
4
5
6
7

Direct-mapped
Set Tag Data

0

1

2

3 0x30

Set Tag Data

0

1

0x30

2-way set associative 4-way set associative

s=3 s=1s=2

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Summary
● Memory hierarchy between caches (multi-level),

memory, disk
○ Like any other storage, short-term/long-term

● Caches are organized into blocks by hashing
addresses
○ Store tag to avoid confusing data

33

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Unit Summary Critique

34

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Critique
● 3 people/breakout!

○ Try to make sure everyone has time to share
○ Helpful feedback includes things that you like and

don’t like!
○ No need to be critical

● These are personal representations of
knowledge!
○ You’re allowed to ignore the feedback that you get
○ But, do make sure to listen!

35

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Direct-Mapped Cache

o Hash function: (block
number) mod (# of blocks in
cache)
• Each memory address maps to

exactly one index in the cache
• Fast (and simpler) to find a

block
36

Block Num Block Data
00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

Memory Cache
Index Tag Block Data
00 00
01 11
10 01
11 01

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Direct-Mapped Cache Problem

o What happens if we access
the following addresses?
• 8, 24, 8, 24, 8, …?
• Conflict in cache (misses!)
• Rest of cache goes unused

o Solution?
37

Block Num Block Data
00 00
00 01
00 10
00 11
01 00
01 01
01 10
01 11
10 00
10 01
10 10
10 11
11 00
11 01
11 10
11 11

Memory Cache
Index Tag Block Data
00 ??
01 ??
10
11 ??

L02: Memory & Data IL16: Caches II CSE351, Summer 2021

Notes Diagrams
register

s
on-chip L1

cache
(SRAM)

main
memory
(DRAM)

local secondary
storage

(local disks)
remote secondary storage
(distributed file systems, web

servers)

off-chip L2
cache

(SRAM)
Larger,
slower,

cheaper
per byte

Smaller
,
faster,
costlier
per
byte

Block Number Block Offset

Selects
the index

Used for
tag comparison

Selects the
byte from block

Tag Index Offset

