
L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Buffer Overflows
CSE 351 Summer 2021

http://xkcd.com/2291/

Instructor: Teaching Assistants:
Mara Kirdani-Ryan Kashish Aggarwal

Nick Durand
Colton Jobes
Tim Mandzyuk

http://xkcd.com/2291/
http://www.youtube.com/watch?v=XtGb5NiGBjc

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Gentle, Loving Reminders

o hw12 due Friday (7/23)
o hw13 due Monday (7/26)
o Lab 2 due tonight! (7/21)

• Extra Credit portion – make sure you also submit to the
Lab 2 Extra Credit assignment on Gradescope

o Lab 3 released!
• Today’s lecture on buffer overflow.
• You get to write some buffer overflow exploits!

2

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Learning Objectives
Understanding this lecture means you can:
● Explain what buffers are, and why they can

overflow
● Perform buffer overflow exploits on vulnerable

code (Lab 3)
● Explain a few mitigations strategies for buffer

overflows
● Critically read technologies through the lens of

agency, support, & access
● Explain race (and other modes of oppression) as

technologies

3

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Review: General Memory Layout
o Stack

• Local variables (procedure context)
o Heap

• Dynamically allocated as needed
• malloc(), calloc(), new, …

o Statically allocated Data
• Read/write: global variables (Static Data)
• Read-only: string literals (Literals)

o Code/Instructions
• Executable machine instructions
• Read-only

4

not drawn to scale

Instructions

Literals

Static Data

Heap

Stack

0

2N-1

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

x86-64 Linux Memory Layout
o Stack

• Runtime stack has 8 MiB limit
o Heap

• Dynamically allocated as needed
• malloc(), calloc(), new, …

o Statically allocated data (Data)
• Read-only: string literals
• Read/write: global arrays and variables

o Code / Shared Libraries
• Executable machine instructions
• Read-only

5

Hex Address

0x00007FFFFFFFFFFF

0x000000
0x400000

Stack

Instructions

Data

Heap

Shared
Libraries

Heap

This is extra (non-testable) material

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Memory Allocation Example

6

char big_array[1L<<24]; /* 16 MB */
char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()
{
 void *p1, *p2, *p3, *p4;
 int local = 0;
 p1 = malloc(1L << 28); /* 256 MB */
 p2 = malloc(1L << 8); /* 256 B */
 p3 = malloc(1L << 32); /* 4 GB */
 p4 = malloc(1L << 8); /* 256 B */
 /* Some print statements ... */
}

not drawn to scale

Where does everything go?

Stack

Instructions

Data

Heap

Shared
Libraries

Heap

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Memory Allocation Example

7

char big_array[1L<<24]; /* 16 MB */
char huge_array[1L<<31]; /* 2 GB */

int global = 0;

int useless() { return 0; }

int main()
{
 void *p1, *p2, *p3, *p4;
 int local = 0;
 p1 = malloc(1L << 28); /* 256 MB */
 p2 = malloc(1L << 8); /* 256 B */
 p3 = malloc(1L << 32); /* 4 GB */
 p4 = malloc(1L << 8); /* 256 B */
 /* Some print statements ... */
}

not drawn to scale

Where does everything go?

Stack

Instructions

Data

Heap

Shared
Libraries

Heap

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

What Is a Buffer?
o A buffer is an array used to temporarily store data

o You’ve probably seen “video buffering…”
• The video is being written into a buffer before being

played

o Buffers can also store user input

8

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Reminder: x86-64/Linux Stack Frame
o Caller’s Stack Frame

• Arguments (if > 6 args) for this call

o Current/ Callee Stack Frame
• Return address

• Pushed by call instruction
• Old frame pointer (optional)
• Caller-saved pushed before setting

up arguments for a function call
• Callee-saved pushed before using

long-term registers
• Local variables

(if can’t be kept in registers)
• “Argument build” area

(Need to call a function with >6
arguments? Put them here)

9

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

(Optional)

Old %rbp

Arguments
7, 8, …

Caller
Frame

Frame pointer
%rbp

Stack pointer
%rsp

(Optional)

Lower Addresses

Higher Addresses

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Buffer Overflow in a Nutshell
o C does not check array bounds!

• Many Unix/Linux/C functions don’t check arg sizes
• Allows overflowing (writing past the end) of buffers

(arrays)

o “Buffer Overflow” = Writing past end of an array

o Linux memory layout provides opportunities for
malicious programs
• Stack grows “backwards” in memory (downwards)
• Data and instructions both stored in the same memory

10

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Buffer Overflow in a Nutshell
o Stack grows down towards lower

addresses

o Buffer grows up towards higher
addresses

o If we write past the end of the
array, we overwrite data on the
stack!

11Lower Addresses

buf[0]

buf[7]

'\0'

'o'

'l'

'l'

'e'

'h'

 Enter input: hello

00

00

00

00

00

40

dd

bf

Return
Address

Higher Addresses

No overflow ☺

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Buffer Overflow in a Nutshell 00

00

00

00

00

40

dd

bf

o Stack grows down towards lower
addresses

o Buffer grows up towards higher
addresses

o If we write past the end of the
array, we overwrite data on the
stack!

12Lower Addresses

Higher Addresses

buf[0]

buf[7]

Return
Address

 Enter input: helloabcdef

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Buffer Overflow in a Nutshell 00

00

00

00

'\0'

'f'

'e'

'd'

o Stack grows down towards lower
addresses

o Buffer grows up towards higher
addresses

o If we write past the end of the
array, we overwrite data on the
stack!

13Lower Addresses

Higher Addresses

buf[0]

buf[7] 'c'

'b'

'a'

'o'

'l'

'l'

'e'

'h'

Return
Address

 Enter input: helloabcdef

Buffer overflow! ☹

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

How are you feeling
so far?

14

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Buffer Overflow in a Nutshell
o Buffer overflows on the stack can overwrite

“interesting” data
• Attackers just choose the right inputs

o Simplest form (a.k.a. called “stack smashing”)
• Unchecked length on string input into bounded array

causes overwriting of stack data
• Change the return address of the current procedure

o Why is this a big deal?
• It was the #1 technical cause of security vulnerabilities

• #1 overall cause is social engineering
15

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

String Library Code
o Implementation of Unix function gets()

• What could go wrong in this code?

16

/* Get string from stdin */
char* gets(char* dest) {
 int c = getchar();
 char* p = dest;
 while (c != EOF && c != '\n') {
 *p++ = c;
 c = getchar();
 }
 *p = '\0';
 return dest;
}

pointer to start
of an array

same as:
 *p = c;
 p++;

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

String Library Code
o Implementation of Unix function gets()

• No way to specify limit on number of characters to read

o Similar problems with other Unix functions:
• strcpy: Copies string of arbitrary length to a dst
• scanf, fscanf, sscanf, when given %s specifier

17

/* Get string from stdin */
char* gets(char* dest) {
 int c = getchar();
 char* p = dest;
 while (c != EOF && c != '\n') {
 *p++ = c;
 c = getchar();
 }
 *p = '\0';
 return dest;
}

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Vulnerable Buffer Code

18

void call_echo() {
 echo();
}

/* Echo Line */
void echo() {
 char buf[8]; /* Way too small! */
 gets(buf);
 puts(buf);
}

unix> ./buf-nsp
Enter string: 123456789012345
123456789012345

unix> ./buf-nsp
Enter string: 12345678901234567
Segmentation Fault

unix> ./buf-nsp
Enter string: 1234567890123456
Illegal instruction

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

 0000000000400597 <echo>:
 400597: 48 83 ec 18 sub $0x18,%rsp
 calls printf ...
 4005aa: 48 8d 7c 24 08 lea 0x8(%rsp),%rdi
 4005af: e8 d6 fe ff ff callq 400480 <gets@plt>
 4005b4: 48 89 7c 24 08 lea 0x8(%rsp),%rdi
 4005b9: e8 b2 fe ff ff callq 4004a0 <puts@plt>
 4005be: 48 83 c4 18 add $0x18,%rsp
 4005c2: c3 retq

Buffer Overflow Assembly (buf-nsp)

19

00000000004005c3 <call_echo>:
 4005c3: 48 83 ec 08 sub $0x8,%rsp
 4005c7: b8 00 00 00 00 mov $0x0,%eax
 4005cc: e8 c6 ff ff ff callq 400597 <echo>
 4005d1: 48 83 c4 08 add $0x8,%rsp
 4005d5: c3 retq

call_echo:

echo:

return address

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Buffer Overflow Stack

20

echo:
 subq $24, %rsp
 ...
 leaq 8(%rsp), %rdi
 call gets
 ...

/* Echo Line */
void echo()
{
 char buf[8]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Before call to
gets

Stack frame for
call_echo

Return address
(8 bytes)

8 bytes unused

[7] [6] [5] [4]

[3] [2] [1] [0]

8 bytes unused

buf

⟵%rsp

Note: addresses increasing right-to-left, bottom-to-top

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Buffer Overflow Example

21

void echo()
{
 char buf[8];
 gets(buf);
 . . .
}

 . . .
 4005cc: callq 400597 <echo>
 4005d1: add $0x8,%rsp
 . . .

call_echo:

Before call to
gets

Stack frame for
call_echo

00 00 00 00

00 40 05 d1

8 bytes unused

[7] [6] [5] [4]

[3] [2] [1] [0]

8 bytes unused

buf

⟵%rsp

echo:
 subq $24, %rsp
 ...
 leaq 8(%rsp), %rdi
 call gets
 ...

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Buffer Overflow Ex #1

22

unix> ./buf-nsp
Enter string: 123456789012345
123456789012345

Overflowed buffer, but did not corrupt state

Stack frame for
call_echo

00 00 00 00

00 40 05 d1

00 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

call_echo:

After call to gets

void echo()
{
 char buf[8];
 gets(buf);
 . . .
}

 . . .
 4005cc: callq 400597 <echo>
 4005d1: add $0x8,%rsp
 . . .buf

⟵%rsp

echo:
 subq $24, %rsp
 ...
 leaq 8(%rsp), %rdi
 call gets
 ...

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Buffer Overflow Ex #2

23

unix> ./buf-nsp
Enter string: 1234567890123456
Illegal instruction

Overflowed buffer and corrupted return pointer

call_echo:

After call to gets
void echo()
{
 char buf[8];
 gets(buf);
 . . .
}

buf

⟵%rsp

Stack frame for
call_echo

00 00 00 00

00 40 05 00

36 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

 . . .
 4005cc: callq 400597 <echo>
 4005d1: add $0x8,%rsp
 . . .

echo:
 subq $24, %rsp
 ...
 leaq 8(%rsp), %rdi
 call gets
 ...

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Buffer Overflow Ex #2 Explained

24

00000000004004f0 <deregister_tm_clones>:
 4004f0: push %rbp
 4004f1: mov $0x601040,%eax
 4004f6: cmp $0x601040,%rax
 4004fc: mov %rsp,%rbp
 4004ff: je 400518
 400501: mov $0x0,%eax
 400506: test %rax,%rax
 400509: je 400518
 40050b: pop %rbp
 40050c: mov $0x601040,%edi
 400511: jmpq *%rax
 400513: nopl 0x0(%rax,%rax,1)
 400518: pop %rbp
 400519: retq

“Returns” to a byte that is not the beginning of an instruction,
so program signals SIGILL, Illegal instruction

⟵%rsp

After return
from echo

buf

Stack frame for
call_echo

00 00 00 00

00 40 05 00

36 35 34 33

32 31 30 39

38 37 36 35

34 33 32 31

8 bytes unused

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

How do you feel about
overwriting return
addresses?

25

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Buffer Overflow:
Code Injection Attacks

o Input string contains byte representation of executable code
o Overwrite return address A with address of buffer B
o When bar() executes ret, will jump to exploit code

26

int bar() {
 char buf[64];
 gets(buf);
 ...
 return ...;
}

void foo(){
 bar();
A:...
}

return address A

Stack after call to gets()

A (return addr)

foo
stack frame

bar
stack frame

B

data written
by gets()

High Addresses

buf starts here
exploit code

pad

Low Addresses

A B

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Checking in!
o vulnerable is vulnerable to stack smashing!
o What is the minimum number of characters that
gets must read in order for us to change the
return address to 0x00 00 7f ff CA FE F0 0D?
• (This is a stack address)

27

Previous
stack frame

00 00 00 00

00 40 05 d1

. . .

[0]

vulnerable:
 subq $0x40, %rsp
 ...
 leaq 16(%rsp), %rdi
 call gets
 ...

🐶 27
🐈 30
🐑 51
🦄 54
🥶 Help!

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Exploits Based on Buffer Overflows

o Distressingly common in real programs
• Programmers keep making the same mistakes ☹
• Recent measures make these attacks more difficult

o Examples across the decades
• Original “Internet worm” (1988)
• Heartbleed (2014, affected 17% of servers)

• Similar issue in Cloudbleed (2017)
• Hacking embedded devices

• Cars, Smart homes, Planes
28

Buffer overflow bugs can allow attackers to
execute arbitrary code on victim machines

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Ex: the original Internet worm (1988)
o Exploited a few vulnerabilities to spread

• Early versions of the finger server (fingerd) used
gets() to read the argument sent by the client:
• finger droh@cs.cmu.edu

• Worm attacked fingerd server with phony argument:
• finger "exploit-code padding
new-return-addr"

• Exploit code: executed a root shell on the victim
machine with a direct connection to the attacker

o Scanned for other machines to attack
• Invaded ~6000 computers in hours (10% of Internet)

• see June 1989 article in Comm. of the ACM
• The author (Robert Morris*) was prosecuted… 29

http://dl.acm.org/citation.cfm?id=66095

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Example: Heartbleed

30

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Example: Heartbleed

31

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Example: Heartbleed

32

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Heartbleed (2014)
o Buffer over-read in OpenSSL

• Open source security library
• Bug in a small range of versions

o “Heartbeat” packet
• Specifies length of message
• Server echoes it back
• Library just “trusted” this length
• Allowed attackers to read

contents of memory anywhere
they wanted

o Est. 17% of Internet affected
• “Catastrophic”
• Github, Yahoo, Stack Overflow,

Amazon AWS, ...
33

By FenixFeather - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=32276981

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

o UW CSE research from 2010 demonstrated
wirelessly hacking a car using buffer overflow

o Overwrote the onboard control system’s code
• Disable brakes
• Unlock doors
• Turn engine on/off

Hacking Cars

34

http://www.autosec.org/pubs/cars-oakland2010.pdf

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

How do we feel about
exploiting buffers?

35

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Dealing with buffer overflow attacks
1) Employ system-level protections

2) Avoid overflow vulnerabilities

3) Have compiler use “stack canaries”

36

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

1) System-Level Protections
o Non-executable code

segments
o In traditional x86, can mark

region of memory as either
“read-only” or “writeable”
• Can execute anything readable

o x86-64 added explicit
“execute” permission

o Stack marked as
non-executable
• Do NOT execute code in

Stack, Static Data, or Heap
regions

• Hardware support needed 37

Stack after call
to gets()

B

foo
stack
frame

bar
stack
frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

1) System-Level Protections
o Non-executable code

segments
• Wait, doesn’t this fix everything?

o Works, but can’t always use it
o Many embedded devices

do not have this protection
• Cars
• Smart homes
• Pacemakers

o Some exploits still work!
• Return-oriented programming
• Return to libc attack

38

Stack after call
to gets()

B

foo
stack
frame

bar
stack
frame

B

exploit
code

paddata written
by gets()

Any attempt to execute this code will fail

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

1) System-Level Protections
o Randomized stack offsets

• At start of program, allocate random
amount of space on stack

• Shifts stack addresses for entire program
• Addresses will vary from one run to another

• Makes it difficult for hacker to predict
beginning of inserted code

o Example: Code from Slide 6 executed
5 times; address of variable local =

• 0x7ffd19d3f8ac
• 0x7ffe8a462c2c
• 0x7ffe927c905c
• 0x7ffefd5c27dc
• 0x7fffa0175afc

• Stack repositioned when program executes
39

main’s
stack frame

Other
functions’

stack frames

Random
allocatio

n

B?

B?

exploit
code

pad

Low Addresses

High Addresses

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

2) Avoid Vulnerabilities in Code

o Use library routines that limit string lengths
• fgets instead of gets (2nd argument to fgets sets

limit)
• strncpy instead of strcpy
• Don’t use scanf with %s conversion specification

• Use fgets to read the string
• Or use %ns where n is a suitable integer 40

/* Echo Line */
void echo()
{
 char buf[8]; /* Way too small! */
 fgets(buf, 8, stdin);
 puts(buf);
}

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

2) Stack Canaries
o Basic Idea: place special value (“canary”) on

stack just beyond buffer
• Secret value that is randomized before main()
• Placed between buffer and return address
• Check for corruption before exiting function

o GCC implementation
• -fstack-protector

41

unix>./buf
Enter string: 12345678
12345678

unix> ./buf
Enter string: 123456789
*** stack smashing detected ***

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Protected Buffer (buf)

42

 400607: sub $0x18,%rsp
 40060b: mov %fs:0x28,%rax
 400614: mov %rax,0x8(%rsp)
 400619: xor %eax,%eax
 call printf ...
 400625: mov %rsp,%rdi
 400628: callq 400510 <gets@plt>
 40062d: mov %rsp,%rdi
 400630: callq 4004d0 <puts@plt>
 400635: mov 0x8(%rsp),%rax
 40063a: xor %fs:0x28,%rax
 400643: jne 40064a <echo+0x43>
 400645: add $0x18,%rsp
 400649: retq
 40064a: callq 4004f0 <__stack_chk_fail@plt>

echo:

This is extra
(non-testable)

material

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Setting Up Canary

43

echo:
. . .
movq %fs:40, %rax # Get canary
movq %rax, 8(%rsp) # Place on stack
xorl %eax, %eax # Erase canary
. . .

/* Echo Line */
void echo()
{
 char buf[8]; /* Way too small! */
 gets(buf);
 puts(buf);
}

Segment register
(don’t worry about it)

Before call to
gets

This is extra
(non-testable)

material

Stack frame for
call_echo

Return address
(8 bytes)

Canary
(8 bytes)

[7][6][5][4]

[3][2][1][0] buf ⟵%rsp

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Checking Canary

44

echo:
 . . .
 movq 8(%rsp), %rax # retrieve from Stack
 xorq %fs:40, %rax # compare to canary
 jne .L4 # if not same, FAIL
 . . .
.L4: call __stack_chk_fail

Input: 1234567

Stack frame for
call_echo

Return address
(8 bytes)

Canary
(8 bytes)

00 37 36 35

34 33 32 31

After call to gets
/* Echo Line */
void echo()
{
 char buf[8]; /* Way too small! */
 gets(buf);
 puts(buf);
}

This is extra
(non-testable)

material

buf ⟵%rsp

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

3) Avoid Overflow Vulnerabilities
o Alternatively, don’t use C - use a language that

does array index bounds check
• Buffer overflow is impossible in Java

• ArrayIndexOutOfBoundsException

• Rust language was designed with security in mind

• Panics on index out of bounds, plus more protections

o C isn’t accessible! Though, neither is
programming, but C is particularly bad.

45

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Summary of Prevention Measures
1) Employ system-level protections

• Code on the Stack is not executable
• Randomized Stack offsets

2) Have compiler use “stack canaries”

3) Avoid overflow vulnerabilities
• Use library routines that limit string lengths
• Use a language that makes them impossible

46

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Think this is cool?
o You’ll love Lab 3 😉

• Check out the buffer overflow simulator!
o Take CSE 484 (Security)

• Several different kinds of buffer overflow exploits
• Many ways to counter them

o Nintendo fun!
• Using glitches to rewrite code:

https://www.youtube.com/watch?v=TqK‐2jUQBUY
• Flappy Bird in Mario:

https://www.youtube.com/watch?v=hB6eY73sLV

47

https://www.youtube.com/watch?v=TqK%E2%80%902jUQBUY
https://www.youtube.com/watch?v=hB6eY73sLV

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

How do we feel about
mitigating buffers?

48

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Now, fun stuff!
(though buffer overflows are interesting)

49

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Last Time

50

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Defining Usability
● If I write C and forget to bounds-check arrays,

whose fault is it?
○ Mine? “I should have known better”
○ K&R’s? “They should have known better”

● Blame tends to be an individualistic focus
○ Sometimes helpful, i.e. malicious criminal cases
○ Sometimes less helpful, i.e. racism

● Def: Use, without causing harm, independent
of physical or cognitive capabilities
○ Inaccessibility is a structural issue, not a personal one

51

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Accessibility & CS
● CS, programming, in general, is inaccessible

○ Lots of cognitive requirements
● Many consumer technologies aren’t accessible

○ Few designed with accessibility in mine
● CS tech isn’t accessible either!

○ Tendency to over-emphasize individual → ideological
foundations of CS

○ Many structures aren’t usable, “just don’t use them”
isn’t always an option

○ Also, switches emphasis back to individual, away
from structural inequity

52

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Agency, Support,
Accessibility

53

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Agency, Support, Accessibility
● Agency: Capacity for exploration and

self-expression (fulfilling wants)
● Support: Ability to receive assistance, receive

care (fulfilling needs)
● Accessibility: Usability, based on needed

support and desired agency
○ What agency can be expressed? What support is

given? Who can use this technology?

● A lens to view technologies
● Who’s designing tech? What assumptions are

being made in that design?
54

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Agency, Support, Access: Assembly
● Agency: Basically, anything that can be

computed, limited by ISA definitions
● Support: None! Everything from the ground up,

the only support is a processor manual

● Accessibility: Building everything from the
ground up requires a lot of assembly, and a high
potential for bugs. Processor manuals are a lot
to read and understand (Intel’s is ~8000 pages!).
○ Low support (basically none), high agency

55

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

C language (1978)
o Created in 1972, “standardized” in 1978

• Goal of writing Unix (precursor to Linux/OSX)
o Explicit Goals:

• Make a faster programming language than B
• Make a simple, minimalistic language; easy to learn

o Non-Goal: make C accessible for learners

56

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Agency, Support, Access: C
● Agency: Matches assembly, anything that can

be computed, within ISA limitations
○ Portability means meeting requirements of many ISAs

● Support: Basic programming constructs, but
nothing more. You’re assumed to not need
support beyond loops/branches/functions

● Access: There’s library functions, but most
things need to be built. The “ground” is higher
than assembly, but not by much. No processor
manuals, but lots of things can go wrong.
○ Low support, high agency

57

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

C: Arrays and Buffers
● Arrays are an opportunity to express agency!

○ Technically available in assembly
○ C gives a high-agency interface, mimicking the

assembly level
● There’s no support with arrays!

○ Compared with assembly, a more powerful tool,
without more support

○ Lack of support means more opportunities for harm
○ There’s more to keep track of! Higher potential for

vulnerabilities, like buffer overflows

58

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

At the time
● Computing was still specialized

○ Programming wasn’t considered a “general task”
● C improves accessibility over assembly, and

agency over B
○ Generally, programming languages aim to improve on

agency/support of prior language
○ C isn’t an exception

59

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Java
● No signed/unsigned distinction!
● Out of bounds exceptions
● No buffer overflows!
● “Write once, run anywhere”

● Aims to improve upon C’s lack of support/OOP,
while maintaining agency expected from
programming languages

60

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Agency, Support, Access: Java
● Agency: You’re further from the hardware, but

still turing complete. Generally slower than C
● Support: Exceptions, array bounds checks,

much more support than C, portability built in,
but lots of security vulnerabilities

● Access: Lots of libraries, pre-built code, more
support than C. Further up from C/Assembly in
the house of computing.
○ Compared with C: Higher support, lower agency

61

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

We’ve been talking
about ideologies all
quarter, what about
those?

62

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

“We shape our tools,
and thereafter, our
tools shape us”

1967
“Reification”, if you want a single word. To make the abstract concrete.

Computing is a tool, but a tool built by a distinctly non-neutral society!
We’ve always had values!

63

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Technology:
Knowledge, encoded into artifacts, tools

64

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

“Human toolmaking is not limited to the stone
instruments of our early ancestors or to the sleek
gadgets produced by the modern tech industry. Human
cultures also create symbolic devices that structure
society. Race, to be sure, is one of our most powerful
tools – developed over hundreds of years, varying
across time and place, codified in law and refined
through custom, and, tragically, still considered by many
people to reflect immutable differences between
groups.”

Ruha Benjamin

65

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

“Human toolmaking is not limited to the stone
instruments of our early ancestors or to the sleek
gadgets produced by the modern tech industry. Human
cultures also create symbolic devices that structure
society. Race, to be sure, is one of our most powerful
tools – developed over hundreds of years, varying
across time and place, codified in law and refined
through custom, and, tragically, still considered by many
people to reflect immutable differences between
groups.”

Ruha Benjamin

66

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Return to Ideology
● Not every “technology” is

“technical”!
● What does it mean to

“use” social or
symbolic technologies?

67

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

ASA: Race
● Agency: Varying, based on position/power
● Support: Varying, based on position/power
● Access: Extremely accessible, access to “race

as technology” continues to be guaranteed by
law
○ Both as oppressed and oppressors!

● Support for whom? Agency for whom?

68

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Assembly, C, Java:

Support for whom?
Agency for whom?
Access for whom?

This extends to other tech...

69

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Racist Technologies
● We can say a technology is racist when agency,

support, and access provided by that technology
are contingent upon one’s racial status

● See: every facial recognition system, motion
detection that assumes whiteness,
software-aided photography, cameras, prison
sentencing algorithms, policing in general,
healthcare, especially around neurodiversity and
cognition, education
○ If a system has outcomes that differ by race, we

should call that system racist
70

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Our path this quarter
● Historical context outside computing to surface

ideologies within computing
● Critically reading texts for ideologies
● Critically reading tech for ideologies

● Comparing ideological priorities

71

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Broad Ideologies
● Neoliberalism

○ Agency’s really important! Access/Support are
“implementation details”

● Communism/Marxism
○ “From each according to his ability, to each

according to his needs” - Marx
○ Support’s really important! Access/Agency are

“implementation details”

72

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Just one framework!
There are many others, but I like this one.

73

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Critical Reading
● For texts:

○ What’s being assumed? What’s being prioritized?
What’s emphasized? What’s given space?

● For tech:
○ What’s prioritized, between agency, support, and

access?
○ What assumptions are made around agency, support,

access?
○ ASA for who? For everyone? Or, only for those with

privilege? Only for those seen as legitimate?
■ Do you need a “Computer Scientist” card?

74

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Who’s welcome in the
house of computing?

75

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Who’s welcome?
● What’s given to newcomers?
● When we hear about agency, for whom?
● When we hear about support, for whom?
● When we hear about access, for whom?

76

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Extra Notes about %rbp
o %rbp is used to store the frame pointer

• Name comes from “base pointer”
o You can refer to a variable on the stack as
%rbp+offset

o The base of the frame will never change, so each
variable can be uniquely referred to with its offset

o The top of the stack (%rsp) may change, so
referring to a variable as %rsp-offset is less
reliable
• For example, if you need save a variable for a function

call, pushing it onto the stack changes %rsp
77

This is extra
(non-testable)

material

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Hacking DNA Sequencing Tech
o Potential for malicious code to be encoded in

DNA!
o Attacker can gain control of DNA sequencing

machine when malicious DNA is read
o Ney et al. (2017)

• https://dnasec.cs.washington.edu/

78

https://dnasec.cs.washington.edu/

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Where Is It?
Variable/Label Section of Memory

big_array

global

huge_array

local

main

p1

*p1

useless

L02: Memory & Data IL13: Buffer Overflow CSE351, Summer 2021

Notes Diagrams

80

Old %rbp

Saved Registers
+

Local Variables

Return Addr

· · ·

%rsp

Caller’s
Stack
Frame

start of
local
array

Higher
Addresses

Lower Addresses

stack
smashing

Old %rbp

Saved Registers
+

Local Variables

Return Addr

· · ·

%rsp

Caller’s
Stack
Frame

1) exploit
codestart of

local
array

Higher
Addresses

Lower Addresses

2) padding

3) array addr

