
L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Recursion & Critical Reading
CSE 351 Summer 2021
Instructor: Teaching Assistants:
Mara Kirdani-Ryan Kashish Aggarwal

Nick Durand
Colton Jobes
Tim Mandzyuk

http://xkcd.com/1790/

http://xkcd.com/1790/
http://www.youtube.com/watch?v=b9mHKXR9Opw

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Gentle, Loving Reminders

o Mid-quarter Survey due tonight (7/16) -- 8pm
• Submit via Canvas!

o hw10 due tonight, hw11 due Monday
o Lab 2 due Wednesday (7/21)

• GDB Tutorial on Gradescope walks through first phase

● Creativity takes time & space! Think about US#2!
○ But, only if there’s space!
○ I’m going to try to have feedback on US#1 by Monday

■ Thanks for your effort!
2

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Disclaimer:
I’m having a hard time!
I’m doing what I can, you’re responsible for
your own learning.

3

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Learning Objectives
Understanding this lecture means you can:
● Trace register usage through a function call
● Trace callee/caller register usage through a

recursive function call/return
● Perform a critical reading of the introduction to

our textbook, analyzing for assumptions and
values

● Perform a critical reading of the reasons that you
took this course, analyzing for assumptions and
values

4

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Example: increment

5

long increment(long *p, long val) {
 long x = *p;
 long y = x + val;
 *p = y;
 return x;
}

increment:
 movq (%rdi), %rax
 addq %rax, %rsi
 movq %rsi, (%rdi)
 ret

Register Use(s)

%rdi 1st arg (p)

%rsi 2nd arg (val), y

%rax x, return value

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedure Call Example (initial state)

o Return address on stack is
the address of instruction
immediately following the call
to “call_incr”
• Shown here as main, but could

be anything)
• Pushed onto stack by call
call_incr 6

call_incr:
 subq $16, %rsp
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

long call_incr() {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return v1 + v2;
}

⟵%rsp

Initial Stack
Structure

• • •

Return addr <main+8>

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedure Call Example (step 1)

o Setup space for local variables
• Only v1 needs stack space

o Compiler allocated extra space
• Often does this for a variety of

reasons, including alignment

7

call_incr:
 subq $16, %rsp
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

Allocate space
for local vars

long call_incr() {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return v1 + v2;
}

• • •

Return addr <main+8>

351
Unused

⟵old %rsp

⟵%rsp

⟵%rsp+8

Stack Structure

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedure Call Example (step 2)

8

call_incr:
 subq $16, %rsp
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

Set up parameters for call
to increment

long call_incr() {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return v1 + v2;
}

• • •

Return addr <main+8>

351
Unused

⟵%rsp

⟵%rsp+8

Stack Structure

Register Use(s)

%rdi &v1

%rsi 100

Aside: movl is used because 100 is a small positive
value that fits in 32 bits. High order bits of rsi get
set to zero automatically. It takes one less byte to
encode a movl than a movq.

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedure Call Example (step 3)

o State while inside increment
• Return address on top of stack is

address of the addq instruction
immediately following call to increment

9

call_incr:
 subq $16, %rsp
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

long call_incr() {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return v1 + v2;
}

increment:
 movq (%rdi), %rax
 addq %rax, %rsi
 movq %rsi, (%rdi)
 ret

• • •

Return addr <main+8>

351
Unused

Return addr <call_incr+?>
⟵%rsp

Stack Structure

Register Use(s)

%rdi &v1

%rsi 100

%rax

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedure Call Example (step 4)

o State while inside increment
• After code in body has been

executed

10

call_incr:
 subq $16, %rsp
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

long call_incr() {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return v1 + v2;
}

Stack Structure

increment:
 movq (%rdi), %rax # x = *p
 addq %rax, %rsi # y = x + 100
 movq %rsi, (%rdi) # *p = y
 ret

• • •

Return addr <main+8>

451
Unused

Return addr <call_incr+?>
⟵%rsp

Register Use(s)

%rdi &v1

%rsi 451

%rax 351

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedure Call Example (step 5)

o After returning from call to increment
• Registers and memory have been

modified and return address has been
popped off stack

11

call_incr:
 subq $16, %rsp
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

long call_incr() {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return v1 + v2;
}

• • •

Return addr <main+8>

451
Unused

⟵%rsp

⟵%rsp+8

Stack Structure

Register Use(s)

%rdi &v1

%rsi 451

%rax 351

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedure Call Example (step 6)

12

long call_incr() {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return v1 + v2;
}

call_incr:
 subq $16, %rsp
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

• • •

Return addr <main+8>

451
Unused

⟵%rsp

⟵%rsp+8

Update %rax to contain v1+v2

Stack Structure

Register Use(s)

%rdi &v1

%rsi 451

%rax 451+351

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedure Call Example (step 7)

13

long call_incr() {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return v1 + v2;
}

call_incr:
 subq $16, %rsp
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

• • •

Return addr <main+8>

451
Unused

⟵%rsp

⟵old %rsp

Stack Structure

De-allocate space for local vars

Register Use(s)

%rdi &v1

%rsi 451

%rax 802

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedure Call Example (step 8)

o State just before returning
from call to call_incr

14

call_incr:
 subq $16, %rsp
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

long call_incr() {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return v1 + v2;
}

• • •

Return addr <main+8>
⟵%rsp

Stack Structure

Register Use(s)

%rdi &v1

%rsi 451

%rax 802

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedure Call Example (step 9)

o State immediately after returning
from call to call_incr
• Return addr has popped off stack
• Control has returned to the

instruction immediately following the
call to call_incr (not shown here)

15

call_incr:
 subq $16, %rsp
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

long call_incr() {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return v1 + v2;
} ⟵%rsp

• • •

Final Stack
Structure

Register Use(s)

%rdi &v1

%rsi 451

%rax 802

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Feelings check:
Procedure calls?

16

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedures
o Stack Structure
o Calling Conventions

• Passing control
• Passing data
• Managing local data

o Register Saving Conventions
o Illustration of Recursion

17

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Register Saving Conventions
o When procedure whoa calls who:

• whoa is the caller

• who is the callee

o Can registers be used for temporary storage?

• No! Contents of register %rdx overwritten by who!
• This could be trouble – something should be done. Either:

• Caller should save %rdx before the call (and restore it after the call)
• Callee should save %rdx before using it (and restore it before

returning)
18

whoa:
 • • •
 movq $15213, %rdx
 call who
 addq %rdx, %rax
 • • •
 ret

who:
 • • •
 subq $18213, %rdx
 • • •
 ret

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Register Saving Conventions
o “Caller-saved” registers

• It is the caller’s responsibility to save any important
data in these registers before calling another procedure
(i.e. the callee can freely change data in these
registers)

• Caller saves values in its stack frame before calling
Callee, then restores values after the call

19

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Register Saving Conventions
● “Callee-saved” registers

• It is the callee’s responsibility to save any data in these
registers before using the registers (i.e. the caller
assumes the data will be the same across the callee
procedure call)

• Callee saves values in its stack frame before using,
then restores them before returning to caller

20

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

x86-64 Linux Register Usage, part 1
o %rax

• Return value
• Also caller-saved & restored
• Can be modified by procedure

o %rdi, ..., %r9
• Arguments
• Also caller-saved & restored
• Can be modified by procedure

o %r10, %r11
• Caller-saved & restored
• Can be modified by procedure

21

%rax

%rdx

%rcx

Return value

%r8

%r9

%r10

%r11

%rdi

%rsi

Arguments

Caller-saved
temporaries

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

x86-64 Linux Register Usage, part 2
o %rbx, %r12, %r13, %r14, %r15

• Callee-saved
• Callee must save & restore

o %rbp
• Callee-saved
• Callee must save & restore
• May be used as frame pointer
• Can mix & match

o %rsp
• Special form of callee save
• Restored to original value upon exit

from procedure

22

%rbx

%rsp

Callee-saved
Temporaries

Special
%rbp

%r12

%r13

%r14

%r15

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

x86-64 64-bit Registers: Usage
Conventions

23

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15 Callee saved

Callee saved

Callee saved

Callee saved

Caller saved

Caller Saved

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rsp

%rbp Callee saved

Callee saved

Stack pointer

Return value - Caller saved

Argument #4 - Caller saved

Argument #1 - Caller saved

Argument #3 - Caller saved

Argument #2 - Caller saved

Argument #6 - Caller saved

Argument #5 - Caller saved

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Wait, $89??? (credit to Kimi Locke)

24

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Callee-Saved Example (step 1)

25

call_incr2:
 pushq %rbx
 subq $16, %rsp
 movq %rdi, %rbx
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq %rbx, %rax
 addq $16, %rsp
 popq %rbx
 ret

long call_incr2(long x) {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return x + v2;
}

Initial Stack
Structure

%rsp

. . .

ret addr

Resulting Stack
Structure

351

Unused
%rsp

. . .

ret addr

%rsp+8

Saved %rbx

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Callee-Saved Example (step 2)

26

call_incr2:
 pushq %rbx
 subq $16, %rsp
 movq %rdi, %rbx
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq %rbx, %rax
 addq $16, %rsp
 popq %rbx
 ret

Pre-return Stack
Structure

%rsp

. . .

Rtn address

Stack Structure

351

Unused
%rsp

. . .

Rtn address

%rsp+8

Saved %rbx

long call_incr2(long x) {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return x + v2;
}

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Why Caller and Callee Saved?
o “Efficiency”
o We want one calling convention to simply separate

implementation details between caller and callee

o In general, neither caller-save nor callee-save is “best”:
• If caller isn’t using a register, caller-save is better
• If callee doesn’t need a register, callee-save is better
• If “do need to save”, callee-save generally makes smaller

programs
• Functions are called from multiple places

o So… “some of each” and compiler tries to “pick registers”
that minimize amount of saving/restoring

27

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Register Conventions Summary
o Caller-saved register values need to be pushed

onto the stack before making a procedure call
only if the Caller needs that value later
• Callee may change those register values

o Callee-saved register values need to be pushed
onto the stack only if the Callee intends to use
those registers
• Caller expects unchanged values in those registers

o Don’t forget to restore/pop the values later!

28

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedures
o Stack Structure
o Calling Conventions

• Passing control
• Passing data
• Managing local data

o Register Saving Conventions
o Illustration of Recursion

29

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1) + pcount_r(x >> 1);
}

Recursive Function

30

pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 jne .L8
 rep ret
.L8:
 pushq %rbx
 movq %rdi, %rbx
 shrq %rdi
 call pcount_r
 andl $1, %ebx
 addq %rbx, %rax
 popq %rbx
 ret

Compiler Explorer:
https://godbolt.org/z/xFCrsw
• Compiled with -O1 for brevity

instead of -Og
• Try -O2 instead!

https://godbolt.org/z/xFCrsw

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Recursive Function: Base Case

31

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1) + pcount_r(x >> 1);
}

Register Use(s) Type

%rdi x Argument

%rax Return value Return value

pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 jne .L8
 rep ret
.L8:
 pushq %rbx
 movq %rdi, %rbx
 shrq %rdi
 call pcount_r
 andl $1, %ebx
 addq %rbx, %rax
 popq %rbx
 ret

Trick because some AMD
hardware doesn’t like
jumping to ret

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Recursive Function: Callee Reg Save

32

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1) + pcount_r(x >> 1);
}

Register Use(s) Type

%rdi x Argument

. . .

rtn <main+?>

saved %rbx

Need original value
of x after recursive
call to pcount_r.

“Save” by putting in
%rbx (callee saved),
but need to save old
value of %rbx before
you change it.

The Stack

pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 jne .L8
 rep ret
.L8:
 pushq %rbx
 movq %rdi, %rbx
 shrq %rdi
 call pcount_r
 andl $1, %ebx
 addq %rbx, %rax
 popq %rbx
 ret

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Recursive Function: Call Setup

33

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1) + pcount_r(x >> 1);
}

Register Use(s) Type

%rdi x (new) Argument

%rbx x (old) Callee saved

. . .

rtn <main+?>

saved %rbx

The Stack

pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 jne .L8
 rep ret
.L8:
 pushq %rbx
 movq %rdi, %rbx
 shrq %rdi
 call pcount_r
 andl $1, %ebx
 addq %rbx, %rax
 popq %rbx
 ret

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 jne .L8
 rep ret
.L8:
 pushq %rbx
 movq %rdi, %rbx
 shrq %rdi
 call pcount_r
 andl $1, %ebx
 addq %rbx, %rax
 popq %rbx
 ret

Recursive Function: Call

34

Register Use(s) Type

%rax
Recursive call
return value

Return value

%rbx x (old) Callee saved

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1) + pcount_r(x >> 1);
}

. . .

rtn <main+?>

saved %rbx

rtn <pcount_r+22>

. . .

The Stack

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Recursive Function: Result

35

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1) + pcount_r(x >> 1);
}

Register Use(s) Type

%rax Return value Return value

%rbx x&1 Callee saved

. . .

rtn <main+?>

saved %rbx

The Stack

pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 jne .L8
 rep ret
.L8:
 pushq %rbx
 movq %rdi, %rbx
 shrq %rdi
 call pcount_r
 andl $1, %ebx
 addq %rbx, %rax
 popq %rbx
 ret

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Recursive Function: Completion

36

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1) + pcount_r(x >> 1);
}

Register Use(s) Type

%rax Return value Return value

%rbx
Previous

%rbx value
Callee

restored

. . .

rtn <main+?>

saved %rbx

The Stack

pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 jne .L8
 rep ret
.L8:
 pushq %rbx
 movq %rdi, %rbx
 shrq %rdi
 call pcount_r
 andl $1, %ebx
 addq %rbx, %rax
 popq %rbx
 ret

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Observations About Recursion
o Works without any special consideration

• Stack frames: each function call has private storage
• Saved registers & local variables, return address
• Register saving conventions prevent one function call

from corrupting another’s data
• Unless the code explicitly does so (e.g. buffer

overflow)
• Stack discipline follows call / return pattern

• If P calls Q, then Q returns before P
• Last-In, First-Out (LIFO)

o Also works for mutual recursion
• (P calls Q; Q calls P)

37

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

x86-64 Stack Frames
o Many x86-64 procedures have a minimal stack

frame
• Only return address is pushed onto the stack when

procedure is called

38

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

x86-64 Stack Frames
o Procedures needs to grow stack frames when:

• Has too many local variables to hold in caller-saved
registers

• Has local variables that are arrays or structs
• Uses & to compute the address of a local variable
• Calls another function that takes more than six

arguments
• Is using caller-saved registers and then calls a

procedure
• Modifies/uses callee-saved registers

39

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Feelings Check:
Recursion!

40

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

x86-64 Procedure Summary
o Important Points

• Procedures are a combination of
instructions and conventions
• Conventions prevent functions from

disrupting each other
• Stack is the right data structure for

procedure call/return
• If P calls Q, then Q returns before P

• Recursion handled by normal calling
conventions

o Heavy use of registers
• Faster than using memory
• Use limited by data size and

conventions
o Minimize use of the Stack

41

Return Addr

Saved
Registers

+
Local

Variables

Argument
Build

Old %rbp

Arguments
7+

Caller
Frame

%rbp
(Optional)

%rsp

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Procedure Call Example – Handout

call_incr:
 subq $16, %rsp
 movq $351, 8(%rsp)
 movl $100, %esi
 leaq 8(%rsp), %rdi
 call increment
 addq 8(%rsp), %rax
 addq $16, %rsp
 ret

long call_incr() {
 long v1 = 351;
 long v2 = increment(&v1, 100);
 return v1 + v2;
}

⟵%rsp

Stack Structure

• • •

Return addr <main+8>

increment:
 movq (%rdi), %rax
 addq %rax, %rsi
 movq %rsi, (%rdi)
 ret

Register Use/Value(s)

%rdi

%rsi

%rax

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

pcount_r:
 movl $0, %eax
 testq %rdi, %rdi
 jne .L8
 rep ret
.L8:
 pushq %rbx
 movq %rdi, %rbx
 shrq %rdi
 call pcount_r
 andl $1, %ebx
 addq %rbx, %rax
 popq %rbx
 ret

Recursive Function – Handout
Register Use(s) Type

%rax
Recursive call
return value

Return value

%rbx x (old) Callee saved

/* Recursive popcount */
long pcount_r(unsigned long x) {
 if (x == 0)
 return 0;
 else
 return (x & 1) + pcount_r(x >> 1);
}

. . .

rtn <main+?>

The Stack

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Textbook:
critical reading

44

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Textbook:
critical reading
An experiment, if that wasn’t clear

45

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Hopefully y’all did the reading!
● Developed @ CMU

○ “Intro to Computer
Systems”

● Textbook followed
from course

● Generally used for
computer systems
courses in CS
○ EE/ECE might have

more HW detail

46

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Hopefully y’all did the reading!
● Kernighan & Ritchie

○ “standardized” C
language

● Short, ~200 pages
● “Seminal” C book
● 1978, 1988 editions

47

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Breakouts!
What’d you see?

48

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Thoughts on course
objectives? Any
ideologies?

49

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

What I noted, among other things

50

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Thoughts the CS:APP
textbook?
Any ideologies?

51

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

What I noted, among other things

52

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Extended notables

53

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Thoughts on the K&R
textbook?

54

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

What I noted, among other things:

55

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Subtle, but not invisible

56

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Themes
● Performance is really, really important
● Simplicity is better, especially with regards to

performance
● “Performance, Correctness, Utility”
● “Rare Power Programmers” understand the

entire system
○ In reality, no one understands the entire system

● Only “novices” are surprised by overflow, or
compare floats for equality

● C is “essential” for systems programmers (this is
kind of true, but self-fulfilling)

57

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

We’ve seen this all before!
Though, maybe not so close to home!

58

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

We’ve seen this all before!
Though, maybe not so close to home!

59

Let’s go even closer!

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Why are you here?

60

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Why’d you take this class?
● I took this class as an undergrad because it was

required…
● Though, I had so much fun that I ended up

staying in computer systems/security
○ Lab 2 was my favorite ✨ ✨

● Looking through the survey, I found some
similarities

61

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Breakouts!
Why’d you take this course?
What did you uncover with a
critical reading?

62

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Asking Questions -- from y’all
● “I want to be a better programmer”

○ What does “better” mean?
○ Why is it important to you to be a better programmer?

● “I want to learn how to program in C”
○ Why is it important to learn C programming?

● “I want to understand core computing
concepts”
○ Why is 351 “core”? Because we said so? Because

the Allen School said so?

63

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

These are entirely
reasonable, also.
I’d just like y’all to understand
yourselves a bit better!

64

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

My goal, when I teach, is to off the
opportunity for you to learn
something that’s broadly applicable,
regardless of where you end up.

Self-discovery, by another name.

65

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Future Employers...
● I mean, y’all need jobs, I get it
● Most CS employers will replicate historic

computing values
○ Efficiency
○ Performance
○ Minimalism (or “elegance”, you might hear it this way)

● Your career isn’t defined by your first job!
○ Most of you will do more than one thing!
○ Asking “Why” helps you learn about yourself!
○ Why Big Four? Why Microsoft?

66

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

These are reflective
questions.
You might need time and space to
answer them.

67

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

When you answer “why”,
who’s answering?

68

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Answering Why
● “I’m taking 351 because I want to be a better

programmer”
● “Understanding the underlying system

makes you better at debugging and
understanding performance”
○ Why is it important to be good at debugging?
○ Why is it important to understand performance?
○ Why is it important to understand the system?

69

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

CS has an ideology!
The Allen School is no exception.

70

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Most ideology is unexamined!
It’s like ___, most folks will probably only look if
something’s going wrong.

71

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

This is true of
ideology broadly!
If we don’t ask questions, we’re doomed to
replicate what we’ve been taught.

72

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

What I was taught in CS
● I should understand everything, all the way down
● I should challenge myself in courses, at the

expense of my self, and my relationships
● Rare Power Programmers (i.e. 10x

programmers) are real, and I should try to be
one
○ By working myself as hard as possible, obviously

● If I get a job at Google/MS/FB/Apple/Amazon,
I’m successful, I should be embarrassed
otherwise
○ Some might be relevant at UW, y’all know better than

me
73

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Try to always question
what you’re learning!
This helped me figure myself out.

74

L02: Memory & Data IL11: Recursion CSE351, Summer 2021

Asking for help
● Come to us with “why” questions!

○ We’re happy to ask more questions
○ We’re happy to give historical context
○ We’re happy to sift through pieces to get to ideology

● This extends well beyond this course!
○ Don’t stop asking, especially if it’s “off-topic”

75

