W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

Recursion & Critical Reading

CSE 351 Summer 2021

Instructor: Teaching Assistants:
Mara Kirdani-Ryan Kashish Aggarwal
Nick Durand

Colton Jobes
Tim Mandzyuk

HOW ARE. YOU DOING? YOUR PROJECTS TM GLAD YOURE INCLUDING MORE. | ALL THE FUNCTIONS YOU'VE WURITTEN
/ vyt | | HOVE STAGNATED COMMENTS IN YOUR CODE, BUT IT | TAKE EVERYTHING PASSED To THEM

o | [e WOULD BE NICE IF THEY IERE | AND RETURN IT UNCHANGED WITH THE

YoU SEEN DISTANT) Ll ,5500" “’E“NG mwm COMYENTS AB0UT YOUR CODE. | COMMENT “NO, Y00 DEAL LITH THIS
LATELY, FOR THE " | ORAT LEAST A BIT'LESS TS A FUNCTIONAL PROGRAMMING
PAST FEL) MONTHS. YOU CANT Jverwoe) OBSCENITY~-FILLED. THING. AVOIDING SIDE. EFFECTS,

, L0OK, THEYSAY TO | YOU AVOD ALL EFFECTS.
FACT CHECK: K LRITE UHAT YOU KNOL) ‘

/ MOSTLY FALSE. N ONLY UAY TO BE SURE.

http://xkcd.com/1790/

CAN'T IMAGINE WHY, j"” EVERYTHING.

http://xkcd.com/1790/
http://www.youtube.com/watch?v=b9mHKXR9Opw

w UNIVERSITY of WASHINGTON i CSE351, Summer 2021

Gentle, Loving Reminders

- Mid-quarter Survey due tonight (7/16) -- 8pm

e Submit via Canvas!

- hw10 due tonight, hw11 due Monday
- Lab 2 due Wednesday (7/21)

* GDB Tutorial on Gradescope walks through first phase

» Creativity takes time & space! Think about US#2!
o But, only if there’s space!

o I'm going to try to have feedback on US#1 by Monday
= Thanks for your effort!

Disclaimer:
I’'m having a hard time!

I’m doing what | can, you’re responsible for
your own learning.

W UNIVERSITY of WASHINGTON i CSE351, Summer 2021

Learning Objectives

Understanding this lecture means you can:

« Trace register usage through a function call

» Trace callee/caller register usage through a
recursive function call/return

. Perform a critical reading of the introduction to
our textbook, analyzing for assumptions and
values

« Perform a critical reading of the reasons that you
took this course, analyzing for assumptions and
values

YA UNIVERSITY of WASHINGTON L11: Recursion

CSE351, Summer 2021

Example: increment

long increment (long *p,

long x = *p;

*p:y;
return x;

long v = x + val;

long val) {

increment: Register m
movq (3rdi), %Srax s rdi 15t arg (p)
addq $rax, %srsi .

. . o : n
movq $rsi, (%rdi) $rsi 2"%arg (val), y
e Srax %, return value

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

CSE351, Summer 2021

Procedure Call Example (initial state)

}

319 call incr() {

long vl =
long v2 =
return vl + v2;

351;

increment (&vl,

100) ;

Initial Stack

gll_incr:

subqg
movqg
movl
leaq
call
addq
addq
ret

$16, S%rsp
$351, 8(%rsp)
$100, %esi

8 (%rsp), %rdi
increment
8 (srsp),
$16, S%rsp

$rax

O

Return addr <main+8>

—5%rsp

Return address on stack is
the address of instruction
immediately following the call
to “call incr”

e Shown here as main, but could
be anything)

* Pushed onto stack by call
call 1incr 6

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

Procedure Call Example (step 1)

Stack Structure

long call incr () {
long vl = 351;
long v2 = increment (&vl, 100); cooe

return vl + v2;

}

Return addr <main+8>

call incr: —oldsrsp

subg $16, %rsp Allocate space 291 —Srsp+8
movq $351, 8(%rsp) for local vars HTUSEC) —%rsp
movl $100, %esi

leaq 8 (%rsp), %rdi .

el imorement - Setup space for local variables

addq 8 (%rsp), %rax
addg $16, Srsp

ret - Compiler allocated extra space

* Often does this for a variety of
reasons, including alignment

* Only v1 needs stack space

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

Procedure Call Example (step 2)

Stack Structure

long call incr () {
long v1 = 351;
long v2 = increment (&vl, 100); coe
return vl + v2;

Return addr <main+8>

call incr: 351
subg $16, %rsp «—5rsp+8
movq $351, 8 (%rsp) Unused —3%rsp
movl $100, %esi Set up parameters for call
leaq 8 ($rsp), %rdi to increment

call increment
addq 8 (%rsp), %rax
addg $16, Srsp

ret

Cnegiter | usel)

Aside: mov1 is used because 100 is a small positive o :
Srdi &vl

value that fits in 32 bits. High order bits of rsi get
set to zero automatically. It takes one less byte to srsi 100
encode a mov1 than a mova.

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

CSE351, Summer 2021

Procedure Call Example (step 3)

Stack Structure

- State while inside increment

Return addr <main+8>

351

Unused

Return addr <call_incr+?>

—53rsp

* Return address on top of stack is

long call incr () {
long vl = 351;
long v2 = increment (&vl, 100);
return vl + v2;
}
call incr:
subq $16, Srsp
movqg $351, 8(%rsp)
movl $100, %esi
leaq 8 (%rsp), %rdi
call increment
addqgq 8 (%rsp), %rax
addg $16, Srsp
ret
increment:
movq (5rdi), Srax
addq $rax, %srsi
movq $rsi, (%rdi)
ret

$rax

address of the addqg instruction
immediately following call to increment

Cnegiter | usel)

$rdi &vl
$rsi 100

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

Procedure Call Example (step 4

Stack Structure

long call incr () {
long vl = 351;
long v2 = increment (&vl, 100); cee

return vl + v2;

}

Return addr <main+8>
call incr: 451
subq $16, Srsp

movq $351, 8(%rsp) Unused

movl $100, %esi Return addr <call_incr+?>|
leaq 8 (5rsp), %rdi —%rsp
call increment

addq 8 (%rsp), Srax - State while inside increment

addg 516, %rsp After code in body has been
ret executed
increment: m
movq ($rdi), Srax # x = *p > rdi g1l
addg $rax, %rsi # vy =x + 100 .
movqg $rsi, (%rdi) # *p =y srsi 451
ret $rax 351

10

YA/ UNIVERSITY of WASHINGTON

L11: Recursion CSE351, Summer 2021

Procedure Call Example (step 5)

long call incr () {
long vl = 351;
long v2 = increment (&vl,
) 9 . (
return vl + v2;

}

Stack Structure

100),’ T)

call incr:
subq $16, Srsp
movqg $351, 8(%rsp)
movl $100, %esi
leaq 8 (%rsp), %rdi
call increment
qaddq 8 (%rsp), %rax
addg $16, Srsp
ret

Return addr <main+8>

451

Unused

—%rspt8

—53rsp

- After returning from call to increment

* Registers and memory have been
modified and return address has been
popped off stack

Snegiter | usels)
$rdi &vl
$rsi 451

srax 351
11

YA/ UNIVERSITY of WASHINGTON

L11: Recursion CSE351, Summer 2021

Procedure Call Example (step 6)

long call incr () {
long vl = 351;
long v2 = increment (&vl,

return vl + v2;

Stack Structure

100),’ T)

subqg
movq
movl
leaq
call
addq
addq
ret

call incr:

$16, %rsp
$351, 8 (%rsp)
$100, %esi
8 (%rsp), %rdi
increment
8 (%rsp), %rax
$16, %rsp

Return addr <main+8>

451
—%rspt8
Unused .
«—3ISP

<+— Update $rax to contain v1+v2

Cnegiter | usel)

$rdi &vl
$rsi 451

srax 451+351

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

CSE351, Summer 2021

Procedure Call Example (step 7)

long call incr () {
long vl = 351;
long v2 = increment (&vl,

return vl + v2;

100) ;

Stack Structure

subqg
movq
movl
leaq
call
addq
addq
ret

call incr:

$16, Srsp
$351, 8(%rsp)
$100, %esi
8 (%rsp), %rdi
increment
8 (%rsp), %rax
$16, S%rsp

Return addr <main+8>

451

—53%rsp

Unused

<— De-allocate space for local vars

Cnegiter | usel)

—old Srsp

&vl
451
802

13

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

Procedure Call Example (step 8)

long call incr() | Stack Structure
long vl = 351;
long v2 = increment (&vl, 100); oo o
return vl + v2;
}
Return addr <main+8>]
call incr: N
subq $16, Srsp
movqg $351, 8(%rsp)
movl $100, %esi
leaq 8 (%rsp), %rdi])
call increment - otate just before returning
addq 8 (%rsp), srax fromcallto call incr
addqg $16, %rsp —
ret
| Register | Usels)
Srdi &vl
srsi 451
srax 802

14

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

CSE351, Summer 2021

Procedure Call Example (step 9)

}

long call incr () {
long vl = 351;
long v2 = increment (&vl,

return vl + v2;

100) ;

Final Stack
Structure

—53rsp

subqg
movqg
movl
leaq
call
addq
addq
ret

call incr:

$16, %rsp
$351, 8 (%rsp)
$100, %esi
8 (%rsp), %rdi
increment
8 (%rsp), %Srax
$16, %rsp

State immediately after returning
fromcallto call incr

* Return addr has popped off stack

e Control has returned to the
instruction immediately following the
callto call incr (not shown here)

Snegiter | usels)
$rdi &vl
$rsi 451

srax 802
15

UNIVERSITY of WASHINGTON L11: Recursion ~ CSE351, Summer 2021

Feelings check:
Procedure calls?

W UNIVERSITY of WASHINGTON i CSE351, Summer 2021

Procedures

- Stack Structure

- Calling Conventions
* Passing control
* Passing data
* Managing local data

- Register Saving Conventions
- lllustration of Recursion

17

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

Register Saving Conventions

- When procedure whoa calls who:
* whoa Is the caller
* who is the callee

- Can registers be used for temporary storage?

whoa: who:
movq $15213, S%rdx subg $18213, S%rdx
call who ° o o
addq %rdx, %rax ret
ret

* No! Contents of register $rdx overwritten by who!

* This could be trouble — something should be done. Either:
- Caller should save $rdx before the call (and restore it after the call)

- Callee should save $rdx before using it (and restore it before

returning) "

W UNIVERSITY of WASHINGTON i CSE351, Summer 2021

Register Saving Conventions

o ‘“Caller-saved” registers

* It is the caller’s responsibility to save any important
data in these registers before calling another procedure
(i.e. the callee can freely change data in these
registers)

* Caller saves values in its stack frame before calling
Callee, then restores values after the call

19

W UNIVERSITY of WASHINGTON i CSE351, Summer 2021

Register Saving Conventions

. “Callee-saved” registers

* It is the callee’s responsibility to save any data in these
registers before using the registers (i.e. the caller
assumes the data will be the same across the callee
procedure call)

* Callee saves values in its stack frame before using,
then restores them before returning to caller

20

w UNIVERSITY of WASHINGTON L11: Recursion

CSE351, Summer 2021

x86-64 Linux Register Usage, part 1

o rax
Return value
 Return value
* Also caller-saved & restored

* Can be modified by procedure

o %rdi, c o oy %r9
Arguments <
* Arguments
* Also caller-saved & restored
* Can be modified by procedure
o 3rl0, %rll
e Caller-saved & restored Caller-saved —

 Can be modified by procedure temporaries

\/

$rax

Srdi

$rsi

Srdx

$rCcx

$r8

$r9

$r10

srll

21

w UNIVERSITY of WASHINGTON L11: Recursion

CSE351, Summer 2021

x86-64 Linux Register Usage, part 2

o

o

o

$rbx, %$rl2, %$rl3, %rl4d, %rlb
e Callee-saved
e Callee must save & restore

%rbp Callee-saved <

Temporaries
e Callee-saved P

e Callee must save & restore

Srbx

srl2

$rl3

srl4

$rlb

* May be used as frame pointer
e Can mix & match Special

3Irsp
* Special form of callee save

* Restored to original value upon exit
from procedure

%rbp

Srsp

22

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

CSE351, Summer 2021

x86-64 64-bit Registers: Usage
Conventions

Erax Return value - Caller saved Sr8 Argument #5 - Caller saved
Srbx Callee saved 19 Argument #6 - Caller saved
>rex Argument #4 - Caller saved 2r10 Caller saved
Srdx Argument #3 - Caller saved Srl1l Caller Saved
Srsi Argument #2 - Caller saved Sr12 Callee saved
Srdi Argument #1 - Caller saved Sr1-3 Callee saved
Srsp Stack pointer Srld Callee saved
Srbp Callee saved %rl5 Callee saved

23

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

Wait, $89?7?? (credit to Kimi Locke)

Women's 100% Silk Dresses | No X -+

<« C @& nordstrom.com/browse/women/clothing/dresses/filter/100-silk~80004
T P 92 items °
| Inflation Calculator
Free Pickup - If in 2021 (enter year)
Set your location to see what’s
- b | purchased an item for $ 130.00
Fhen 1999 (enter year)
Category = in
Dresses that same item would cost: $81.77
Casua Cumulative rate of inflation: =-37.1%

- Vince Slim Fitted Slié_'——p G

Now: $130.00 - $195.00
Was: $325.00 Up to 60% off selected
T —_— colors/sizes

24

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

Callee-Saved Example (step 1)

long call incr2(long x) {
long vl = 351;
long v2 = increment (&vl,
return x + v2;

100) ;

Initial Stack

call incr2:

pushq Srox

subgq $16, Srsp
movq $rdi, %Srbx
movq $351, 8 (%rsp)
movl $100, %esi
leaq 8 (%rsp), %rdi
call increment
addq $rbx, S%Srax
addg $16, Srsp
pPoprq srbx

ret

ret addr

<

Resulting Stack

ret addr

Saved $rbx

351

Unused

CSE351, Summer 2021

Srsp

srsp+8

Srsp -

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

Callee-Saved Example (step 2)

long call incr2(long x) {
long vl = 351;
long v2 = increment (&vl,
return x + v2;

100) ;

Stack Structure

Rtn address

call incr2:

pushq Srbx

subqgq $16, Srsp
movq $rdi, %Srbx
movq $351, 8 (%rsp)
movl $100, %esi
leaq 8 (%rsp), %rdi
call increment
addq $rbx, S%Srax
addq $16, %rsp
pPoprq Srbx

ret

Saved $rbx

351

Unused

Pre-return Stack

Rtn address

<

CSE351, Summer 2021

srsp+8

Srsp

Srsp

26

w UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

Why Caller and Callee Saved?

- "Efficiency”
- We want one calling convention to simply separate
Implementation details between caller and callee

- In general, neither caller-save nor callee-save is “best”:
* If caller isn’t using a register, caller-save is better
* If callee doesn’t need a register, callee-save is better

* If “do need to save”, callee-save generally makes smaller
programs

- Functions are called from multiple places

- 90... 'some of each” and compiler tries to “pick registers”
that minimize amount of saving/restoring

27

w UNIVERSITY of WASHINGTON i CSE351, Summer 2021

Register Conventions Summary

o Caller-saved register values need to be pushed
onto the stack before making a procedure call
only if the Caller needs that value later

* Callee may change those register values

- Callee-saved register values need to be pushed
onto the stack only if the Callee intends to use
those regqisters

e Caller expects unchanged values in those registers

- Don'’t forget to restore/pop the values later!

28

YA/ UNIVERSITY of WASHINGTON

CSE351, Summer 2021

Procedures

©)

©)

o

Stack Structure

Calling Conventions

* Passing control

* Passing data

* Managing local data

Register Saving Conventions

lllustration of Recursion

29

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

Recursive Function

/* Recursive popcount */
long pcount r (unsigned long x) {

1if (x ==
return

else
return

0)
0;

(x & 1) +pcount r(x>>1);

CSE351, Summer 2021

Compiler Explorer:
https://godbolt.org/z/xFCrsw

* Compiled with =01 for brevity
instead of —Og
* Try =02 instead!

pcount r:
movl
testq
jne
rep ret

.L8:
pushqg
movq
shrq
call
andl
addqg
popdq
ret

S0, %eax
$rdi, %Srdi
. L8

srbox
srdi,
Srdi
pcount r
$S1, %ebx
srbx,
srbx

Srbx

$rax

30

https://godbolt.org/z/xFCrsw

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

CSE351, Summer 2021

Recursive Function: Base Case

/* Recursive popcount */
long pcount r (unsigned long x) {
if (x == 0)
return O;
else

return (x & 1) + pcount r(x>>1);

Trick because some AMD “——4

hardware doesn’t like
jumping to ret

Regser|Usel) | Twe

srdi X Argument
%rax Return value Return value

pcount r:
movl S0, %eax
testqg $rdi, %rdi
jne .L8

> rep ret

.L8:
pushq srbx
movq srdi, S%Srbx
shrq srdi
call pcount r
andl $S1, %ebx
addq $rbx, S%Srax
pPoprq srbx
ret a1

YA/ UNIVERSITY of WASHINGTON

srsp—

L11: Recursion

Recursive Function: Callee Reg Save

/* Recursive popcount */
long pcount r (unsigned long x) {
if (x == 0)
return O;
else
return (x & 1) + pcount r(x>>1);

CSE351, Summer 2021

The Stack

Need original value
of x after recursive
call to pcount r.

“Save” by putting in

$rbx (callee saved),
but need to save old

value of $rbx before
you change it.

rtn <main+?>

saved $rbx

Regser|Usel) | Twe

Srdi X Argument

pcount r:
movl S0, %eax
testqg srdi, Srdi
jne .L8
rep ret

.L8:
pushq Srox
movq srdi, Srbx
shrq srdi
call pcount r
andl $S1, %ebx
addq $rbx, S%Srax
pPoprq srbx
ret 32

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

CSE351, Summer 2021

Recursive Function: Call Setup

(
return 0O;
else
return

/* Recursive popcount */

long pcount r (unsigned long x) {
if

== 0)

(x & 1) +pcount r(x>>1);

Srsp —

The Stack

rtn <main+?>

saved $rbx

Regser|Usel) | Twe

$rdi x (new) Argument
$rbx x (old) Callee saved
pcount r:
movl S0, %eax
testqg srdi, Srdi
jne .L8
rep ret
.L8:
pushq srbx
movq srdi, S%Srbx
shrq srdi
call pcount r
andl $S1, %ebx
addq $rbx, S%Srax
pPoprq srbx
ret a3

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

CSE351, Summer 2021

Recursive Function: Call

/* Recursive popcount */
long pcount r (unsigned long x) {
if (x == 0)
return O;
else

return (x & 1) +pcount r(x>>1);

The Stack

rtn <main+?>

saved $rbx

Regsier|Usel) | Twe

Recursive call
Srax Return value
return value
$rbx x (old) Callee saved
pcount r:
movl S0, %eax
testqg srdi, Srdi
jne .L8
rep ret
.L8:
pushq srbx
movq srdi, S%Srbx
shrq srdi
call pcount r
andl $S1, %ebx
addq $rbx, S%Srax
pPoprq srbx
ret a4

YA/ UNIVERSITY of WASHINGTON

Srsp —

L11: Recursion

CSE351, Summer 2021

Recursive Function: Result

/* Recursive popcount */
long pcount r (unsigned long x) {
if (x == 0)
return 0O;
else
return (x & 1) + pcount r(x>>1);

The Stack

rtn <main+?>

saved $rbx

Regser|Usel) | Twe

$rax Returnvalue Return value
Srbx x&1 Callee saved
pcount r:
movl S0, %eax
testqg srdi, Srdi
jne .L8
rep ret
.L8:
pushq srbx
movq srdi, S%Srbx
shrq srdi
call pcount r
andl $1, %ebx
addq $rbx, %rax
pPoprq srbx
ret a5

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

CSE351, Summer 2021

Recursive Function: Completion

/* Recursive popcount */
long pcount r (unsigned long x) {
if (x == 0)
return O;
else

return (x & 1) + pcount r(x>>1);

The Stack

| rtn <main+?> |

Regser|Usel) | Twe

$rax Returnvalue Return value
% rbx Previous Callee
$rbx value restored
pcount r:
movl S0, %eax
testqg srdi, Srdi
jne .L8
rep ret
.L8:
pushq srbx
movq srdi, S%Srbx
shrq srdi
call pcount r
andl $S1, %ebx
addq $rbx, S%Srax
pPoprq Srbx
ret 36

W UNIVERSITY of WASHINGTON i CSE351, Summer 2021

Observations About Recursion

- Works without any special consideration

» Stack frames: each function call has private storage
- Saved registers & local variables, return address

- Register saving conventions prevent one function call
from corrupting another’s data

- Unless the code explicitly does so (e.g. buffer
overflow)
* Stack discipline follows call / return pattern
- If P calls Q, then Q returns before P
- Last-In, First-Out (LIFO)

- Also works for mutual recursion
. (P calls Q; Q calls P)

37

W UNIVERSITY of WASHINGTON i CSE351, Summer 2021

x86-64 Stack Frames

- Many x86-64 procedures have a minimal stack
frame

* Only return address is pushed onto the stack when
procedure is called

38

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

x86-64 Stack Frames

- Procedures needs to grow stack frames when:

* Has too many local variables to hold in caller-saved
registers

* Has local variables that are arrays or structs
* Uses & to compute the address of a local variable

e Calls another function that takes more than six
arguments

* Is using caller-saved registers and then calls a
procedure

* Modifies/uses callee-saved registers

39

UNIVERSITY of WASHINGTON L11: Recursion ~ CSE351, Summer 2021

Feelings Check:
Recursion!

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

x86-64 Procedure Summary

- Important Points

* Procedures are a combination of
instructions and conventions

- Conventions prevent functions from
disrupting each other

» Stack is the right data structure for
procedure call/return

- If P calls Q, then Q returns before P

* Recursion handled by normal calling
conventions

- Heavy use of registers
* Faster than using memory

* Use limited by data size and
conventions

- Minimize use of the Stack

CSE351, Summer 2021

(
Caller <
Frame
Arguments
L 7+
Return Addr
$rbp | Old Srbp
(Optional)
Saved
Registers
+
Local
Variables
Argument
Build
Srsp —»

YA/ UNIVERSITY of WASHINGTON

L11: Recursion

CSE351, Summer 2021

Procedure Call Example — Handout

100) ;

long call incr () {
long vl = 351;
long v2 = increment (&vl,
return vl + v2;
}
call incr:
subq $16, %rsp
movqg $351, 8 (%rsp)
movl $100, %$esi
leaq 8 (%rsp), %rdi
call increment
addq 8 (%rsp), %rax
addg $16, %rsp
ret
increment:
movq (5rdi), Srax
addq $rax, %rsi
movq $rsi, (%rdi)
ret

Use/Value(s)

Srdi
$rsi

$rax

Stack Structure

Return addr <main+8>

—53%rsp

YA/ UNIVERSITY of WASHINGTON

Srsp —

L11: Recursion

CSE351, Summer 2021

Recursive Function — Handout

/* Recursive popcount */
long pcount r (unsigned long x) {
if (x == 0)
return O;
else

return (x & 1) + pcount r(x>>1);

The Stack

rtn <main+?>

Regsier|Usel) | Twe

Recursive call

Srax Return value
return value
$rbx x (old) Callee saved
pcount r:
movl S0, %eax
testqg srdi, Srdi
jne .L8
rep ret
.L8:
pushq srbx
movq srdi, S%Srbx
shrq srdi
call pcount r
andl $S1, %ebx
addq $rbx, S%Srax
pPoprq srbx
ret

UNIVERSITY of WASHINGTON L11: Recursion ~ CSE351, Summer 2021

Textbook:
critical reading

Textbook:
critical reading

An experiment, Iif that wasn’t clear

YA/ UNIVERSITY of WASHINGTON i CSE351, Summ

Hopefully y’all did the reading!

er 2021

([Developed @ CMU THIRD EDITION
o “Intro to Computer COMPUTER SYSTEMS
Systems” A PROGRAMMER’S PERSPECTIVE

. Textbook followed
from course

« Generally used for
computer systems
courses in CS

o EE/ECE might have
more HW detall

BRYANT ¢ O'HALLARON

46

YA/ UNIVERSITY of WASHINGTON

CSE351, Summer 2021

Hopefully y’all did the reading!

« Kernighan & Ritchie
o ‘“standardized” C
language
« Short, ~200 pages
. “Seminal” C book
. 1978, 1988 editions

SECOND EDITION

T

L

—

-

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

PRENTICE HALL SCFTWARE SERIES

47

UNIVERSITY of WASHINGTON L11: Recursion ~ CSE351, Summer 2021

Breakouts!
What'd you see?

UNIVERSITY of WASHINGTON L11: Recursion ~ CSE351, Summer 2021

Thoughts on course
objectives? Any
ideologies?

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

What | noted, among other things

Our aim in 15-213/18-213/15-513 is to help you become a better programmer by teaching you the basic
concepts underlying all computer systems. We want you to learn what really happens when your programs
run, so that when things go wrong (as they always do) you will have the intellectual tools to solve the

problem.

Why do you need to understand computer systems if you do all of your programming in high level lan-
guages? In most of computer science, we're pushed to make abstractions and stay within their frameworks.
But, any abstraction ignores effects that can become critical. As an analogy, Newtonian mechanics ignores
relativistic effects. The Newtonian abstraction is completely appropriate for bodies moving at less than 0.1c,
but higher speeds require working at a greater level of detail.

2. You've got to know assembly language. Even if you never write programs in assembly, The behavior of
a program cannot be understood sometimes purely based on the abstraction of a high-level language.
Further, understanding the effects of bugs requires familiarity with the machine-level model.

4. There is more to performance than asymptotic complexity. Constant factors also matter. There are
systematic ways to evaluate and improve program performance.

50

UNIVERSITY of WASHINGTON L11: Recursion ~ CSE351, Summer 2021

Thoughts the CS:APP
textbook?
Any ideologies?

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

What | noted, among other things

This book (known as CS: APP) is for computer scientists, computer engineers, and
others who want to be able to write better programs by learning what is going on
“under the hood” of a computer system.

Our aim is to explain the enduring concepts underlying all computer systems,
and ta chow von the eoncrete wave that thege ideas affect the carrectness nerfor-

oI these aspects, with the unitying theme ol a programmer’s perspective.

If you study and learn the concepts in this book, you will be on your way to
becoming the rare power programmer who knows how things work and how to
fix them when they break. You will be able to write programs that make better
use of the capabilities nrovided bv the operatine svstem and svstems software.

grammer, the compiler, and the operating system can take to reduce these
threats. Learning the concepts in this chapter helps you become a better
programmer, because you will understand how programs are represented
on a machine. One certain benefit is that you will develop a thorough and
concrete understanding of pointers.

AL WA LA ALY TEAANS AL AASALALEWRA Al W J VAALAL WAL A4SV WIAML L 444 VLA T LA A WA VESAALALWA T3 T AL S wrasavess

language, and it is clearly and beautifully described in the classic “K&R” text
by Brian Kernighan and Dennis Ritchie [61]. Regardless of your programming
background, consider K&R an essential part of your personal systems library. If
your prior experience is with an interpreted language, such as Python, Ruby, or

ations.
Having a solid understanding of computer arithmetic is critical to writ-
ing reliable programs. For example, programmers and compilers cannot re-

place the expression (x<y) with (x-y < 0), due to the possibility of overflow. "

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

Extended notables

uumgucu HULIIUTID. ¥YYO LUVTL LT lliauciiiauucal Pl UPCI LITD UL dl11uuucus Ul)"
erations. Novice programmers are often surprised to learn that the (two’s-
complement) sum or product of two positive numbers can be negative. On
the other hand, two’s-complement arithmetic satisfies many of the algebraic
properties of integer arithmetic, and hence a compiler can safely transform
multiplication by a constant into a sequence of shifts and adds. We use the
it lavial ncmnvatinan Af Mt Ancmnnantenta tha caianialan nad namaliantinaan ~AF
the other hand, most students, including all computer scientists and computer
engineers, would be required to use and program computers on a daily basis. So we
decided to teach about systems from the point of view of the programmer, using
the following filter: we would cover a topic only if it affected the performance,
correctness, or utility of user-level C programs.
For example. topics such as hardware adder and bus designs were out. Top-

Chapter 5: Optimizing Program Performance. This chapter introduces a number
of techniques for improving code performance, with the idea being that pro-
grammers learn to write their C code in such a way that a compiler can then

OL Progrdains Colltauing mciioly 1CiCicliciny Criors Sucil dad SWIdpEe ICAdRS
and invalid pointer references. Finally, many application programmers write
their own storage allocators optimized toward the needs and characteris-
tics of the application. This chapter, more than any other, demonstrates the
benefit of covering both the hardware and the software aspects of computer
systems in a unified way. Traditional computer architecture and operating
systems texts present only part of the virtual memory story.

53

UNIVERSITY of WASHINGTON L11: Recursion ~ CSE351, Summer 2021

Thoughts on the K&R
textbook?

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

What | noted, among other things:

and a rich set of operators. C is not a ‘‘very high level’’ language, nor a *‘big’’ one, and is not specialized to any particular
area of application. But its absence of restrictions and its generality make it more convenient and effective for many tasks
than supposedly more powerful languages.

The book is not an introductory programming manual; it assumes some familiarity with basic programming concepts like
variables, assignment statements, loops, and functions. Nonetheless, a novice programmer should be able to read along and
pick up the language, although access to more knowledgeable colleague will help.

In our experience, C has proven to be a pleasant, expressive and versatile language for a wide variety of programs. It is easy
to learn, and it wears well as on’s experience with it grows. We hope that this book will help you to use it well.

C is a relatively ‘‘low-level’’ language. This characterization is not pejorative; it simply means that C deals with the same
sort of objects that most computers do, namely characters, numbers, and addresses. These may be combined and moved about
with the arithmetic and logical operators implemented by real machines.

Although the absence of some of these features may seem like a grave deficiency, (‘“You mean I have to call a function to
compare two character strings?’’), keeping the language down to modest size has real benefits. Since C is relatively small, it
can be described in small space, and learned quickly. A programmer can reasonably expect to know and understand and
indeed regularly use the entire language.

LIV ¥V l\d\lull\gﬂ v yl\.’y\’l UL ViIdI GV aara \/Al.lll\/ll. WAJIE VA DIVILO AL avu “11\4“\‘] Uil vilaviivwa UJ &U\Ju \fulllll.ll\/l;). 4 Jiv LI YY

function declarations are another step in this direction. Compilers will warn of most type errors, and there is no automatic
conversion of incompatible data types. Nevertheless, C retains the basic philosophy that programmers know what they are
doing; it only requires that they state their intentions explicitly.

C o S L FRIERUSIEEREEY L SHOEES PSSR R e © SRR, EHOSORY . PERECERECLIE) | SIS SRSy PEESSES, ESRVRCIpH L MO ORISR S S S, EOESDE SIS SO I DO Y |\ ESSERDEREEEEey S

55

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

Subtle, but not invisible

W UNIVERSITY of WASHINGTON i CSE351, Summer 2021

Themes

Performance is really, really important
Simplicity is better, especially with regards to
performance

“Performance, Correctness, Utility”

“Rare Power Programmers” understand the

entire system
o In reality, no one understands the entire system

Only “novices” are surprised by overflow, or
compare floats for equality

C is “essential” for systems programmers (this is
kind of true, but self-fulfilling)

57

We’ve seen this all before!
Though, maybe not so close to home!

We’ve seen this all before!
Though, maybe not so close to home!

Let’s go even closer!

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

Why are you here?

YA/ UNIVERSITY of WASHINGTON

Why’d you take this class?

« | took this class as an undergrad because it was

required...

« Though, | had so much fun that | ended up
staying in computer systems/security
o Lab 2 was my favorite

» Looking through the survey, | found some

similarities

CSE351, Summer 2021

61

Breakouts!

Why’d you take this course?
What did you uncover with a
critical reading?

SSSSSSSSSSSSSSSSS

W UNIVERSITY of WASHINGTON i CSE351, Summer 2021

Asking Questions -- from y’all

. “l want to be a better programmer”

o What does “better” mean?

o Why is it important to you to be a better programmer?
. “lI want to learn how to program in C”

o Why is it important to learn C programming?
. “l want to understand core computing

concepts”

o Why is 351 “core”? Because we said so? Because
the Allen School said so?

63

These are entirely
reasonable, also.

I’d just like y’all to understand
yourselves a bit better!

SSSSSSSSSSSSSSSSS

W UNIVERSITY of WASHINGTON L11: Recurson. ... (CSE351 , Summer 2021

My goal, when | teach, is to off the
opportunity for you to learn
something that’s broadly applicable,
regardless of where you end up.

Self-discovery, by another name.

CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

Future Employers...

| mean, y'all need jobs, | get it
Most CS employers will replicate historic

computing values

o Efficiency

o Performance

o Minimalism (or “elegance”, you might hear it this way)
Your career isn’'t defined by your first job!

o Most of you will do more than one thing!

o Asking “Why” helps you learn about yourself!

o Why Big Four? Why Microsoft?

66

These are reflective
questions.

You might need time and space to
answer them.

SSSSSSSSSSSSSSSSS

When you answer “why”,
who’s answering?

YA/ UNIVERSITY of WASHINGTON

CSE351, Summer 2021

Answering Why

. 'I'm taking 351 because | want to be a better
programmer”

e “Understanding the underlying system
makes you better at debugging and
understanding performance”

o Why is it important to be good at debugging?
o Why is it important to understand performance?
o Why is it important to understand the system?

69

W UNIVERSITY of WASHINGTON L11: Recurson. ... (CSE351 , Summer 2021

CS has an ideology!

The Allen School is no exception.

W UNIVERSITY of WASHINGTON L11: Recursion CSE351, Summer 2021

Most ideology is unexamined!

It’s like ____, most folks will probably only look if
something’s going wrong.

This Is true of
iIdeology broadly!

If we don’t ask questions, we’re doomed to
replicate what we’ve been taught.

W UNIVERSITY of WASHINGTON i CSE351, Summer 2021

What | was taught in CS

| should understand everything, all the way down
| should challenge myself in courses, at the
expense of my self, and my relationships

Rare Power Programmers (i.e. 10x
programmers) are real, and | should try to be

one
o By working myself as hard as possible, obviously
If | get a job at Google/MS/FB/Apple/Amazon,
I’'m successful, | should be embarrassed
otherwise

o Some might be relevant at UW, y’all know better than
me

73

UNIVERSITY of WASHINGTON L11: Recursion ~ CSE351, Summer 2021

Try to always question
what you’re learning!

This helped me figure myself out.

W UNIVERSITY of WASHINGTON i CSE351, Summer 2021

Asking for help

» Come to us with “why” questions!

o We're happy to ask more questions

o We’'re happy to give historical context

o We're happy to sift through pieces to get to ideology
« This extends well beyond this course!

o Don't stop asking, especially if it's “off-topic”

75

