—-=00 0~ L O=D~0==0O0 =000~
Q0= Q0 =0 =D -0~ =00 -0C00—=—u
—— Q=00 a0 ~000 == 0o
— 0= =0 =000~ == ==~ 00~--0
O 0000w = === OCO0==0 ===
O0=0Q00 == w o = = 00 =-=0===00.
000 ~—mm= CO==-Q===00~0=~0
|||||| 00 =~ =0 ===00==uO=-0"~
—— QO = === Q0= = e =0~00~
CO0= == ==D0~Q Qw0 ~00~= ="
~Q==wul0 .00 -~ 0=~00~-~~000
-=0O0 = =0 =0~ CC e e =O0000 = =
Q=0 ~0~00 e =000 00= cmn =
- Q0= 00 = e - =000 O e = o -
O=00w « «vQO00 = v == Qo e =
O—=== 0000 - w= === o o®
-—0000 v = e Qeemom == 000~ 0
000 = = = o = O = 000-0~ 0~

_I
N
o
I
P
Q
£
S
3
@
=
wn
(32}
L
(%)
(&)

"'O llll OOO'||°‘0|-O||O

gramming

L08: x86 Assembly Il

OR
wl.m
O
e L]
[
1 O3 & =22 x
= I S L w2 oy
] ©F 52 eEss
>~ M ¥ = € 5O ©
- ru-K.lmSDnM
e ﬁerE E0 <« 8
= XSsaam.mmm
2 O £ P2 Z0F


http://www.youtube.com/watch?v=Gs069dndIYk

YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Gentle, Loving Reminders

- Lab 1b due tonight! 8pm

* Submit aisle manager.c, store client.c, and
lablBreflect.txt

* Can still use late days until 7/12
- hwo6, hw7 due tonight! 8pm
- Unit Summary 1 due Monday (7/12) — 8pm

* Can still use late days until 7/14

- hw8 due Monday (7/12) — 8pm



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Gentle, Loving Reminders

- Lab1a grades released today or Monday
* Talk to us about any questions you have!

* Regrades open 24 hours after grades are released,
stay open usually for about a week

- Lab 2 released later today!
* Debugging x86-64 assembly using gdb



UNIVERSITY of WASHINGTON L08:x86 Assemblytt ... CSE351, Summer 2021

Guest Lectures
Incoming!



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Guest Lectures

« My partner’s getting surgery on Wednesday 7/14
o Justin Hsia (351 instructor in Autumn) is filling in
o | probably won’t respond to anything that day

. Some TAs are going to step in and lecture!
o More details as we go forward



YA/ UNIVERSITY of WASHINGTON LO8: x86 Assembly II

CSE351, Summer 2021

Learning Objectives

Understanding this lecture means you can...

. Explain the difference between mov and lea
« EXxplain condition codes!

o What are they? Where are they stored?

o How are they used to implement control flow?

o How are they modified by cmp, test, set and
arithmetic operations?

o How can they be read with movz and movs?

« Translate assembly functions with arithmetic and
control flow to C, and vice versa

. Explain the difference between RISC and CISC
architectures, from an ideological perspective



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly I CSE351, Summer 2021

x86-64 Introduction

- Data transfer instruction (mov)

- Arithmetic operations

- Memory addressing modes

o Address computation instruction (1ea)



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

A note on register widths & Overflow

» Registers are only so wide (64b/8B in x86-64)
« This is the physical limitation that we talked

about with integers & floats!

o “We only have so many bits” — registers are only so
wide



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Memory Addressing Modes: Basic

o Indirect: (R) Mem[Reg[R]]
* Data in register R specifies the memory address
* Like pointer dereference in C

 Example: movqg (%rcx), %rax

- Displacement: D (R) Mem|[Reg[R]+D]

* Data in register R specifies the start of some memory
region

* Constant displacement D specifies the offset from that
address

* Example: movqg 8 ($rbp), %$rdx




YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Complete Memory Addressing Modes

- General:
D(Rb,Ri,S) Mem|[Reg[Rb]+Reg[Ri]*S+D]
- Rb:Base register (any register)
- Ri:Index register (any register except $rsp)
- S: Scale factor (1, 2, 4, 8) — why these numbers?
- D: Constant displacement value (a.k.a. immediate)

- Special cases (see CSPP Figure 3.3 on p.181)
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D](S=1)
* (Rb,Ri, S) Mem|[Reg[Rb]+Reg[Ri]*S] (D=0)
°* (Rb,Ri) Mem[Reg[Rb]+Reg[R1i]] (S=1,D=0)
* (,R1,9) Mem[Reg[Ri]*S] (Rb=0,D=0)




YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Address Computation Examples

Srdx 0x£000 D(Rb,R1,S8) =-
Srox 0x0100 Mem|[Reg[Rb]+Reg[Ri]*S+D]

Mix and match expressions to addresses!

0x8 ($rdx) s 0x1e080
($rdx, 3rcx) 7 0x£400
(3rdx, $rcx, 4) ¥) 0xf008
0x80 (, Srdx, 2) % 0xf100

&9 if you’re stuck!

11



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Address Computation Instruction

o leaqg src, dst; load effective address
* src is address expression (in any format)
* dst Is a register

* Sets dst to the address computed by the src
expression (does not go to memory! — it just does math)

* Example: leag (%rdx, %rcx,4), %rax
- Uses:

* Computing addresses without a memory reference
- €.g. translationof p = &x[i];

* Computing arithmetic expressions of the form
x+k*1+d
- Though k can only be 1,2, 4, or 8

12



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Example: lea vs. mov

Registers Memory Word
Address
$rax O0x400] 0x120
%]be OXF OX118
Ox8] 0x110
Trcx Ox4
0x10| 0x108
Srdx 0x100
0x1| 0x100
srdi
srsi
leag (%rdx, %rcx,4), %rax
movqg (srdx,srcx,4), %rbx
leaqg (%rdx), %rdi
movqg (%rdx), %rsi

13



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Example: lea vs. mov

Registers Memory Word
Address
$rax O0x110 O0x400] 0x120
%]be OXF OX118
Ox8] 0x110
Trcx Ox4
0x10| 0x108
Srdx 0x100
0x1| 0x100
srdi
srsi
leag (%rdx, %rcx,4), %rax
movqg (srdx,srcx,4), %rbx
leaqg (%rdx), %rdi
movqg (%rdx), %rsi

14



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Example: lea vs. mov

Registers Memory Word
Address
$rax O0x110 O0x400] 0x120
%rbX OX8 OXF OX118
Ox8] 0x110
Trcx Ox4
0x10| 0x108
Srdx 0x100
0x1| 0x100
srdi
srsi
leag (%rdx, %rcx,4), %rax
movqg (srdx,srcx,4), %rbx
leaqg (%rdx), %rdi
movqg (%rdx), %rsi

15



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Example: lea vs. mov

Registers Memory Word

Address
$rax O0x110 0x400 ]| 0x120
%rbX OX8 OXF OX118
Ox8| 0x110

$rCcx Ox4
Ox10| 0x108

$rdx 0x100
Ox1| 0x100

Srdi 0x100

srsi
leag (%rdx, %rcx,4), %rax
movqg (srdx,srcx,4), %rbx
leaqg (%rdx), %rdi
movqg (%rdx), %rsi

16



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Example: lea vs. mov

Registers Memory Word

Address
$rax O0x110 0x400 ]| 0x120
%rbX OX8 OXF OX118
Ox8| 0x110

$rCcx Ox4
Ox10| 0x108

$rdx 0x100
Ox1| 0x100

Srdi 0x100

srsi Ox1
leag (%rdx, %rcx,4), %rax
movqg (srdx,srcx,4), %rbx
leaqg (%rdx), %rdi
movqg (%rdx), %rsi

17



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

lea — "It just does math”

18



YA/ UNIVERSITY of WASHINGTON

L08: x86 Assembly Il

CSE351, Summer 2021

Arithmetic Example

ret

long arith(long x, long y, long z)
{
long tl = x + y;
long t2 = z + t1;
long t3 = x + 4;
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 * tb5;
return rval;
}
arith:
leaq (%rdi, $rsi), Srax
addqg srdx, %srax
leaq (%rsi, %srsi,2), S%Srdx
salqg $4, %rdx
leaq 4 ($rdi, $rdx), %rcx
imulg $rcx, srax

Register Use(s)
Srdi 1%t argument (x)
srsi 2" argument (y)
srdx  3™argument (z)

- Interesting

Instructions

* leaq: “address’
computation

« salg: shift

e 1mulqg:

multiplication
- Only used once!

19



YA/ UNIVERSITY of WASHINGTON

L08: x86 Assembly Il

Arithmetic Example

CSE351, Summer 2021

Register Use(s)

srdi X
long arith(long x, long y, long z) cret Y
{ srdx z, t4
long tl = x + y; $rax tl, t2, rval
long t2 = z + t1;
long t3 = x + 4; 3ICX o
long t4 = y * 48;
long t5 = t3 + t4;
long rval = t2 * tb5;
return rval;
}
arith:
leaqg ($rdi, 3rsi), Srax ¥ rax/tl = x + vy
addg $rdx, %rax # rax/t2 = tl + =z
leaqg ($rsi, %$rsi,2), %rdx # rdx = 3 * vy
salq $4, Srdx # rdx/t4 = (3*y) * 16
leaqg 4 (%rdi, $rdx), %rcx # rcx/th = x + t4 + 4
imulg $rcx, %Srax # rax/rval = t5 * t2

ret

20



YA UNIVERSITY of WASHINGTON L08: x86 Assembly ||

Polling Question [Asm Il — a]

- Which of the following x86-64 instructions
correctly calculates $rax = 9 * $rdi?

0.0
)
o leag (%rdi,%rdi,8), Srax

"% movqg (%rdi,%$rdi,8), %rax
& We’re lost...

CSE351, Summer 2021

21



UNIVERSITY of WASHINGTON L08:x86 Assemblytt ... CSE351, Summer 2021

Feelings Check:
LEA & MOV?



W UNIVERSITY of WASHINGTON L08: x86 Assembly I CSE331, Summer 2021

Control Flow — —

Srdi 1°t argument (x)

Srsi 2" argument (y)

$rax return value
long max (long x, long vy)
{
long max; ez
if (x > vy) | 54 o
max — x: movq srdi, srax
} else {
max = Yy,
) movq $rsi, Srax
return max;
| ret

23



YA UNIVERSITY of WASHINGTON L08: x86 Assembly | CSE351, Summer 2021

Control Flow st Usels)

Srdi 1°t argument (x)

Srsi  2"argument (y)

Srax return value
long max (long x, long vy)
{
long max; - : nax: .
if (x > y) { Conditional jump if x <=y then jump to else
max = X; movq $rdi, %rax
} else ({ Unconditional jump JCLUZRIReIeisls
max = y; elges
) movq $rsi, Srax
return max; done:
} ret

24



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Conditionals and Control Flow

- Conditional branch/jump

* Jump to somewhere else if some condition is true,
otherwise execute next instruction

- Unconditional branch/jump
* Always jJump when you get to this instruction

- Together, they can implement most control flow constructs
In high-level languages:
e if (condition) then {..} else {..}
* while (condition) {..}
® do {..} while (condition)
e for (initialization; condition; iterative) {...}

* switch {..} 25



YA UNIVERSITY of WASHINGTON L08: x86 Assembly ||

x86 Control Flow

o

o

©)

@)

Condition codes

Conditional and unconditional branches
Loops

Switches

CSE351, Summer 2021

26



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Processor State (x86-64, partial)

- Information about Registers
currently executing =~ === 318
Srbx $r9
program == ——
* Temporary data S rdx 5r11
( srax, ... ) Srsil Sr12
* Location of runtime srdi 5r13
stack ( %rSp ) Srsp $rl4
srbp 5rl5

e Location of current

code control point

(%rip, ...) o i Program Counter
—F (instruction pointer)

current top of the Stack

27



YA/ UNIVERSITY of WASHINGTON

L08: x86 Assembly Il

CSE351, Summer 2021

Processor State (x86-64, partial)

- Information about
currently executing
program
* Temporary data

($rax, ...)

* Location of runtime
stack ( $rsp)

* Location of current
code control point
($rip, ...)

» Status of recent tests
( CF, ZF, SF, OF )

- Single bit registers:

Registers

srax %r8

srbx %r9

Srcx srl0
Srdx srll
srsi srl?2
Srdi $rl3
Srsp srld
srbp srl5

current top of the Stack

> - Program Counter
Srip

(instruction pointer)

CF ZF SF OF | Condition Codes

28



YA/ UNIVERSITY of WASHINGTON

L08: x86 Assembly Il

CSE351, Summer 2021

Condition Codes (Implicit Setting)

« Implicitly set by arithmetic operations
= (think of it as side effects)
= Example: addg src,

dst & r

d+s

= CF=1 if carry out from MSB (unsigned overflow)

= ZF=1 if r==
= SF=1 if r<0 (if MSBis 1)

= OF=1 if signed overflow

(s>0 && d>0 && r<0) || (s<0 && d<O0 && r>=0)

Not set by 1ea instruction (beware!)

=

Carry Flag

LE

Zero Flag

SF

Sign Flag

OF

Overflow F/ag]

29



YA/ UNIVERSITY of WASHINGTON

L08: x86 Assembly Il

CSE351, Summer 2021

Condition Codes (Explicit Setting:
Compare)

- Explicitly set by Compare instruction
* cmpg s, d sets flags based on d-s, but doesn’t store

d-s

* CF=1 if carry out from MSB (i.e unsigned comparison)

° 2F=1 if a==

e SF=1 if (b-a)<0 (if MSBis 1)

* OF=1 if signed overflow
(a>0 && b<0 &&

(a<0 && b>0 &&

(b-a)>0) ||
(b-a)<0)

=

Carry Flag

LE

Zero Flag

SF

Sign Flag

OF

Overflow F/ag]

30



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Condition Codes (Explicit Setting: Test)

o Explicitly set by Test instruction
* testq src2, srcl

* testg a, b sets flags based on a&b, but doesn’t store
a&b

- Useful to have one of the operands be a mask

* Can’t have carry out (CF) or overflow (OF)
e ZF=1 if agb==
e SF=1 if a&b<0 (signed)

[CF Carry Flag |/ F'| Zero Flag |SFE'| Sign Flag |OF'| Overflow F/ag]

31



YA/ UNIVERSITY of WASHINGTON

Using Condition Codes: Jumping

- J* Instructions

L08: x86 Assembly Il

CSE351, Summer 2021

* Jumps to target (an address) based on condition codes

Instruction Condition Description

jmp target 1 Unconditional

je target ZF Equal / Zero

jne target ~ZF Not Equal / Not Zero
Js target SF Negative

jns target ~SF Nonnegative

jg target | ~ (SF"OF) &~ZF | Greater (Signed)

jge target ~ (SF"OF) Greater or Equal (Signed)
j1 target (SEF”OF) Less (Signed)

jle target (SEF~OF) | ZF | Less or Equal (Signed)
ja target ~CF&~ZF Above (unsigned “>”
jb target CF Below (unsigned “<“

32



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Using Condition Codes: Setting

o set* Instructions
« Set low-order byte of dst to 0 or 1 based on condition codes
* Does not alter remaining 7 bytes

Instruction Condition Description

sete dst ZF Equal / Zero

setne dst ~7F Not Equal / Not Zero
sets dst SF Negative

setns dst ~SF Nonnegative

setg dst |~ (SF"OF) &~7ZF | Greater (Signed)
setge dst ~ (SF"OF) Greater or Equal (Signed)
setl dst (SF~OF) Less (Signed)

setle dst (SF~OF) | ZF | Less or Equal (Signed)
seta dst ~CF&~7ZF Above (unsigned “>")
setb dst CF Below (unsigned “<”

33



YA/ UNIVERSITY of WASHINGTON

L08: x86 Assembly Il

CSE351, Summer 2021

Reminder: x86-64 Integer Registers

Accessing the low-order byte:

$rax 2al
Srhx °bl
O o

o2 YXCX Scl
Srdx 2d1
@) : o _ s
XSl $sil
Srdi $dil
Srsp sspl
srbp Sbpl

sr8 %r8b
sr9 %19
sr1l0 %r10b
srll 5rllb
Srl12 srl2b
srl3 %r13Db
srl4 $r14b
srlb5 %r15b

34



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

. . m Register Use(s)
Readlng Condltlon COdeS $rdi 1% argument (x)

srsi 2" argument (y)

- set* Instructions srax  returnvalue
* Set a low-order byte to 0 or 1 based on condition codes
* Operand: byte register (e.g. al, d1) or byte in memory
* Do not alter remaining bytes in register
- Use movzbqg (zero-extended mov) to fill register

int gt (long x, long vy)
{

return x > y;

}

cmpgq $rsi, %Srdi #
setg $al #
movzbg %al, S%rax #
ret

35



YA/ UNIVERSITY of WASHINGTON

L08: x86 Assembly Il

Register

Reading Condition Codes ...

- set* Instructions

$rax

CSE351, Summer 2021

Use(s)

1%t argument (x)

2" argument (y)

return value

* Set a low-order byte to 0 or 1 based on condition codes
* Operand: byte register (e.g. al, d1) or byte in memory

* Do not alter remaining bytes in register

* Use movzbqg (zero-extended mov) to fill register

int gt (long x, long vy)
{
return x > y;
}
cmpq $rsi, %Srdi # Compare x:Vy
setg sal # Set when >
movzbg %al, %eax # Zero rest of S%Srax
ret

36



YA/ UNIVERSITY of WASHINGTON LO8: x86 Assembly II

CSE351, Summer 2021

Aside: movz and movs

movz  Src, regDest # NMove with zero extension
movs  src, regDest # Move with sign extension

* Copy from a smaller source value to a larger destination

* Source can be memory or register; Destination must be a register
* Fill remaining bits of dest with zero (movz) or sign bit (movs)

movzSD / movsSD:
S —size of source (b = 1B, w=2)
D—size ofdest (w=2B,1 =4, g=8)

Example:

movzbqg %al, S%Srbx

37



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly Il CSE351, Summer 2021

Aside: movz and movs

movz  Src, regDest # NMove with zero extension
movs  src, regDest # Move with sign extension

* Copy from a smaller source value to a larger destination
* Source can be memory or register; Destination must be a register
* Fill remaining bits of dest with zero (movz) or sign bit (movs)

7

Note: In x86-64, any instruction that
movzSD / movsSD: generates a 32-bit (long word) value

ol — — for a register also sets the high-order
2~ Slzé of source (b 1 B’ w 2) portion of the register to 0. Good

D — size of dest (W = ZB, 1= 4, q= 8)Lexample on p. 184 in the textbook.

Copy 1 byte from memory into 0x00/0x00/0x7F|[0x80]0xC6|0x1F|0xn4|0xEs |
8-byte register & sign extend it

0x80
movsbl (%rax), %ebX

0x80
38



UNIVERSITY of WASHINGTON L08: x86 Assemblynt ... CSE351, Summer 2021

How do we feel about
condition codes?



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Technical Summary

- Memory Addressing Modes: The addresses
used for accessing memory in mov (and other)
iInstructions can be computed in several different
ways
* Base register, index register, scale factor, and

displacement map well to pointer arithmetic operations

- Control flow in x86 determined by status of
Condition Codes

* Showed Carry, Zero, Sign, and Overflow, others exist

* Set flags with arithmetic instructions (implicit) or
Compare and Test (explicit), read with set instruction

* Jump instructions use flag values to determine next
iInstruction to execute 40



https://en.wikipedia.org/wiki/Status_register#Common_flags

YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Instruction Set Architectures
- The ISA defines:

* The system’s state (e.g. registers, memory, program
counter)

 The instructions the CPU can execute

 The effect that each of these instructions will have on

the system state
CPU

PC Memory

Registers

41



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Instruction Set Philosophies

o Complex Instruction Set Computing (CISC): Add
more and more elaborate and specialized
Instructions as needed

* Lots of tools for programmers to use, but hardware
must be able to handle all instructions

* x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs
o Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular
* Easier to build fast hardware

* Let software do the complicated operations by
composing simpler ones

42



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Design Goals

- Complex Instruction Set Computing (CISC):

Complete a task in as few instructions as possible

* Fetch instructions from memory as part of other
instructions
* Minimize memory access (which takes a while)

o Reduced Instruction Set Computing (RISC):
All instructions should complete in a single clock
cycle (FP mult can be ~30 cycles)

* Easier to build fast hardware
* Minimize complexity, maximize performance

43



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

What’s the ideology?



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Examining Ideology: Critical Reading

1. Go through descriptions, sales pitches,
comparisons, really, any content
.. Highlight:
a. What's assumed to be important?
b. What's valued?
c. What's emphasized? What's given space?

5. Read through highlights, examine for themes
1. (ideally) Ask for how others see it! You're always
limited by your own perspective.

45



YA/ UNIVERSITY of WASHINGTON LO8: x86 Assembly II

CSE351, Summer 2021

Queering: Queer Reading

- Reading literature (texts, broadly) for
heteronormative or identity binaries

o ldeological assumptions! Assumed without question.

o Are folks assumed to be straight? How much are are
gender norms enforced?

O e.g. look at letters from celibate monks, what
happens if we assumed homonormativity? \What
happens if we assume other ideologies?

« More popular in 1980s/1990s, though still in use

o Surfacing ideology’s much older than “queering’, this
IS just especially prevalent for me

46



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Design Goals

- Complex Instruction Set Computing (CISC):

Complete a task in as few instructions as possible

* Fetch instructions from memory as part of other
instructions
* Minimize memory access (which takes a while)

o Reduced Instruction Set Computing (RISC):
All instructions should complete in a single clock
cycle (FP mult can be ~30 cycles)

* Easier to build fast hardware
* Minimize complexity, maximize performance

47



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly Il CSE351, Summer 2021

Design Goals

- Complex Instruction Set Computing (CISC):

Complete a task in as few instructions as possible

* Fetch instructions from memory as part of other
instructions
* Minimize memory access (which takes a while)

o Reduced Instruction Set Computing (RISC):
All instructions should complete in a single clock
cycle (FP mult can be ~30 cycles)

* Easier to build fast hardware
* Minimize complexity, maximize performance

48



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly I CSE351, Summer 2021

Design Goals

. ‘as few instructions as possible” -- minimalism

« "Minimize memory access” -- minimalism,
efficiency

« Easy to build -- minimalism

. Emphasis on “fast” hardware -- efficiency,
production, performance

o "Minimize complexity” -- minimalism

. "Maximize performance” -- | mean, it's right there

49



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Ideology through Design Goals

« Minimalism, Efficiency, Performance
o We've seen this before! We've seen this throughout!

» CISC & RISC are usually viewed as “different
design philosophies”
o How are they actually different?

50



YA/ UNIVERSITY of WASHINGTON L08: x86 Assembly || CSE351, Summer 2021

Ideology through Design Goals

« Minimalism, Efficiency, Performance
o We've seen this before! We've seen this throughout!

» CISC & RISC are usually viewed as “different
design philosophies”
o How are they actually different?
o Different goals, but both pursue efficiency, minimalism
o Really, just this is just efficiency; minimalism is a
means to an end

51



UNIVERSITY of WASHINGTON L08:x86 Assemblytt ... CSE351, Summer 2021

Different
Implementations,
same ideology!

Most of “traditional” CS follows both of these



"~ WASHINGTON

The B

of the

Think of your next microcomputer as a weapon

against horrendous inefficiencies, outrageous costs
and antiquated speeds. We invite you to peruse this chart.

|
| Features: l 8080A Z80-CPU | Features: 8080A 280-CPU
|
Power Supplies +5,~5,+12 +5 Instructions 78 158*
Clock 2¢,+12Volt 1,5 Volt OP Codes 244 696
Standard Clock o
Speed 500ns 400ns Addressing Modes 7
Interface Requires (F)lleh%urulrggsigo Working Registers 8 | 17
823?3'282?128 and inclucRies T L -
dynamic RAM p to 5 times greater
Réfresh Ahcoughput. than the 8080A
3modes; up | Program Memor Generally 50% less
s imode | {oGXfaster | Space Y | ‘hanthe 8080A
Non-maskable No Yes *Including all of the 8080A's instructions.
Interrupt
N\ ——

\~ TEE CHOICE OF -/
\ WEBAPONS IS
JoURs,
- 2 T

" nnouncing Zilog Z-80

! microcomputer
= products.

\With the next generation,
the battle is joined.

The Z-80: A new generation LS| com-
ponent set including CPU and 1/0
Controllers

The Z-80: Full software support with
emphasis on high-level languages.

The Z-80: A floppy disc-based develop-
ment system with advanced real-time de-
bug and in-circuit emulation capabilities.
The Z-80: Multiple sourcing

available now.

’bul'vulmnunition:
© A chip off a new block.

A single chip, N-channel processor
arms you with a super-set of 158 instruc-
tions that include all of the 8080A's 78
instructions with total software compati-
bility. The new instructions include 1,4,8
and 16-bit operations. And that means
less programming time, less paper and
less end costs.

And you'll be in command of power-
ful instructions: Memory-to-memory or
memory-to-1/0O block transfers and
searches, 16-bit arithmetic, 9 types of
rotates and shifts, bit manipulation and
a legion of addressing modes. Along with
this army you'll also get a standard in-
struction speed of 1.6 us and all Z-80
circuits require only a single 5V power
supply and a single phase 5V clock. And
you should know that a family of Z-80
programmable circuits allow for direct
interface to a wide range of both parallel
and serial interface peripherals and
even dynamic memories without other
external logic

With these features, the Z80-CPU
generally requires approximately 50%
less memory space for program storage

yet provides up to 500% more throughput
than the 8080A. Powerful ammunition

at a surprisingly low cost and ready for
immediate shipment

\ ' ighty weapons
against an

\S enemy

entrenched: ‘T'he Z-80

development system.

A

You'll be equipped with perform-
ance and versatility unmatched by any
other microcomputer development sys-
tem in the field. Thanks to a floppy disc
operating system in alliance with a
sophisticated Real-Time Debug Module

The Zilog battalion includes:

© Z80-CPU Card.

* 16K Bytes of RAM Memory, expand-
able to 60K Bytes.

* 4K Bytes of ROM/RAM Monitor
software

© Real-Time Debug Module and In-
Circuit Emulation Module.

© Dual Floppy Disc System

* Optional 1/0 Ports for other High
Speed Peripherals are also available.

* Complete Software Package including
Z-80 Assembler, Editor, Disc Operating
System, File Maintenance and Debug

| e

Cod
( )n standby:
./ Software support.
All this is supported by a contingent
of software including: resident micro-
computer software, time sharing pro-

grams, libraries and high-level languages
such as PL/Z

€23
( ) n standby:
\. l iser Sll[)[)()l‘t.

Zilog conducts a wide range of
strategic meetings and design oriented
workshops to provide the know-how re-
quired to implement the Z-80 Micro-
computer Product line into your design
All hardware, software and the develop-
ment system are thoroughly explained
with “hands-on” experience in the class-
room. Your Zilog representative can
provide you with further details on our
user support program.

=

. 1 }cint‘orccmcms:

Areserve of
= technological
innovations.

The Zilog Z-80 brings to the battle-
front new levels of performance and
ease of programming not available in
second generation systems. And while all
the others busy themselves with over-
taking the Z-80, we're busy on the next
generation—continuing to demonstrate
our pledge to stay a generation ahead

The Z-80's troops are the special-
ists who were directly responsible for
the development of the most successful
first and second generation micro-
processors. Nowhere in the field is there
a corps of seasoned veterans with such
a distinguished record of victory.

Signal us for help.We'll dispatch
appropriate assistance.

&

‘.

ZIIOg MICROCOMPUTERS

170 State Street. Los Altos. California 94022
415) 941-5055/TWX 910-370-7955

Circle 33 on reader service card
AN AFFILIATE OF EXCON ENTERPRISES INC




YA/ UNIVERSITY of WASHINGTON LO8: x86 Assembly II

The Case for the
Reduced Instruction Set Computer

David A. Patterson

Computer Science Division
University of California
Berkeley, California 94720

David R. Ditzel

Bell Laboratories
Computing Science Research Center
Murray Hill, New Jersey 07974

INTRODUCTION

One of the primary goals of computer architects is to design computers that are more cost-
effective than their predecessors. Cost-effectiveness includes the cost of hardware to manufacture
the machine, the cost of programming, and costs incurred related to the architecture in debugging
both the initial hardware and subsequent programs. If we review the history of computer families
we find that the most common architectural change is the trend toward ever more complex
machines. Presumably this additional complexity has a positive tradeoff with regard to the cost-
effectiveness of newer models. In this paper we propose that this trend is not always cost-effective,

and in fact, may even do more harm than good. We shall examine the case for a Reduced Instruc-

tion Set Computer (RISC) being as cost-effective as a Complex Instruction Set Computer (CISC).
This paper will argue that the next generation of VLSI computers may be more effectively imple-
mented as RISC’s than CISC’s.

As examples of this increase in complexity, consider the transitions from IBM System/3 to the
System/38 [Utley78] and from the DEC PDP-11 to the VAX11. The complexity is indicated quanti-
tatively by the size of the control store; for DEC the size has grown from 256 x 56 in the PDP 11/40
to 5120 x 96 in the VAX 11/780.

CSE351, Summer 2021

54



We’ll be doing this
much more in 351!

I’m doing this with material for CSE351!

SSSSSSSSSSSSSSSSS



