
L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

x86-64 Programming II
CSE 351 Summer 2020
Instructor: 
Mara Kirdani-Ryan

Teaching Assistants:
Kashish Aggarwal
Nick Durand
Colton Jobes
Tim Mandzyuk

http://www.youtube.com/watch?v=Gs069dndIYk


L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Gentle, Loving Reminders
o Lab 1b due tonight! 8pm

• Submit aisle_manager.c, store_client.c, and 
lab1Breflect.txt

• Can still use late days until 7/12
o hw6, hw7 due tonight! 8pm
o Unit Summary 1 due Monday (7/12) – 8pm

• Can still use late days until 7/14
o hw8 due Monday (7/12) – 8pm

2



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Gentle, Loving Reminders
o Lab1a grades released today or Monday

• Talk to us about any questions you have!
• Regrades open 24 hours after grades are released, 

stay open usually for about a week

o Lab 2 released later today!
• Debugging x86-64 assembly using gdb

3



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Guest Lectures 
incoming!

4



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Guest Lectures
● My partner’s getting surgery on Wednesday 7/14

○ Justin Hsia (351 instructor in Autumn) is filling in
○ I probably won’t respond to anything that day

● Some TAs are going to step in and lecture!
○ More details as we go forward 

5



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Learning Objectives
Understanding this lecture means you can…
● Explain the difference between mov and lea
● Explain condition codes!

○ What are they? Where are they stored?
○ How are they used to implement control flow?
○ How are they modified by cmp, test, set and 

arithmetic operations?
○ How can they be read with movz and movs?

● Translate assembly functions with arithmetic and 
control flow to C, and vice versa

● Explain the difference between RISC and CISC 
architectures, from an ideological perspective

6



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

x86-64 Introduction
o Data transfer instruction (mov)
o Arithmetic operations
o Memory addressing modes
o Address computation instruction (lea)

7



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

A note on register widths & Overflow
● Registers are only so wide (64b/8B in x86-64)
● This is the physical limitation that we talked 

about with integers & floats!
○ “We only have so many bits” → registers are only so 

wide

8



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Memory Addressing Modes:  Basic
o Indirect:   (R) Mem[Reg[R]]

• Data in register R specifies the memory address
• Like pointer dereference in C
• Example: movq (%rcx), %rax

o Displacement: D(R) Mem[Reg[R]+D]
• Data in register R specifies the start of some memory 

region
• Constant displacement D specifies the offset from that 

address
• Example: movq 8(%rbp), %rdx

9



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Complete Memory Addressing Modes
o General:

• D(Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S+D]
• Rb:Base register (any register)
• Ri:Index register (any register except %rsp)
• S: Scale factor (1, 2, 4, 8) – why these numbers?
• D: Constant displacement value (a.k.a. immediate)

o Special cases  (see CSPP Figure 3.3 on p.181)
• D(Rb,Ri)  Mem[Reg[Rb]+Reg[Ri]+D](S=1)
• (Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S](D=0)
• (Rb,Ri)  Mem[Reg[Rb]+Reg[Ri]]  (S=1,D=0)

• (,Ri,S)  Mem[Reg[Ri]*S]    (Rb=0,D=0) 10



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Address Computation Examples

11

%rdx

%rcx

0xf000

0x0100

 

Mix and match expressions to addresses!

0x8(%rdx)

(%rdx,%rcx)

(%rdx,%rcx,4)

0x80(,%rdx,2)

🐶 0x1e080

🐈 0xf400

🐑 0xf008

🦄 0xf100

🥶 if you’re stuck!



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Address Computation Instruction
o leaq src, dst; load effective address

• src is address expression (in any format)
• dst is a register
• Sets dst to the address computed by the src 

expression (does not go to memory! – it just does math)
• Example:  leaq (%rdx,%rcx,4), %rax

o Uses:
• Computing addresses without a memory reference

• e.g. translation of  p = &x[i];

• Computing arithmetic expressions of the form  
x+k*i+d
• Though k can only be 1, 2, 4, or 8

12



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Example:  lea  vs.  mov

13

0x120 

0x118

0x110 

0x108 

0x100 

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x4

0x100

%rdi

%rsi

leaq (%rdx,%rcx,4), %rax
movq (%rdx,%rcx,4), %rbx
leaq (%rdx), %rdi
movq (%rdx), %rsi



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Example:  lea  vs.  mov

14

0x120 

0x118

0x110 

0x108 

0x100 

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x110

0x4

0x100

%rdi

%rsi

leaq (%rdx,%rcx,4), %rax
movq (%rdx,%rcx,4), %rbx
leaq (%rdx), %rdi
movq (%rdx), %rsi



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Example:  lea  vs.  mov

15

0x120 

0x118

0x110 

0x108 

0x100 

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x110

0x8

0x4

0x100

%rdi

%rsi

leaq (%rdx,%rcx,4), %rax
movq (%rdx,%rcx,4), %rbx
leaq (%rdx), %rdi
movq (%rdx), %rsi



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Example:  lea  vs.  mov

16

0x120 

0x118

0x110 

0x108 

0x100 

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x110

0x8

0x4

0x100

%rdi 0x100

%rsi

leaq (%rdx,%rcx,4), %rax
movq (%rdx,%rcx,4), %rbx
leaq (%rdx), %rdi
movq (%rdx), %rsi



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Example:  lea  vs.  mov

17

0x120 

0x118

0x110 

0x108 

0x100 

Word
Address

Memory

123

0x10

0x1

0x400

0xF

0x8

Registers

%rax

%rbx

%rcx

%rdx

0x110

0x8

0x4

0x100

%rdi 0x100

%rsi 0x1

leaq (%rdx,%rcx,4), %rax
movq (%rdx,%rcx,4), %rbx
leaq (%rdx), %rdi
movq (%rdx), %rsi



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

lea – “It just does math”

18



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Arithmetic Example

19

o Interesting 
Instructions
• leaq: “address” 

computation
• salq: shift
• imulq: 

multiplication
• Only used once!

long arith(long x, long y, long z)
{
  long t1 = x + y;
  long t2 = z + t1;
  long t3 = x + 4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
}

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rdx 3rd argument (z)

arith:
  leaq    (%rdi,%rsi), %rax
  addq    %rdx, %rax
  leaq    (%rsi,%rsi,2), %rdx
  salq    $4, %rdx
  leaq    4(%rdi,%rdx), %rcx
  imulq   %rcx, %rax
  ret



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Arithmetic Example

20

long arith(long x, long y, long z)
{
  long t1 = x + y;
  long t2 = z + t1;
  long t3 = x + 4;
  long t4 = y * 48;
  long t5 = t3 + t4;
  long rval = t2 * t5;
  return rval;
}

Register Use(s)

%rdi x

%rsi y

%rdx z, t4

%rax t1, t2, rval

%rcx t5

arith:
  leaq    (%rdi,%rsi), %rax    # rax/t1   = x + y
  addq    %rdx, %rax           # rax/t2   = t1 + z
  leaq    (%rsi,%rsi,2), %rdx  # rdx      = 3 * y
  salq    $4, %rdx             # rdx/t4   = (3*y) * 16
  leaq    4(%rdi,%rdx), %rcx   # rcx/t5   = x + t4 + 4
  imulq   %rcx, %rax           # rax/rval = t5 * t2
  ret



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Polling Question [Asm II – a]
o Which of the following x86-64 instructions 

correctly calculates %rax = 9 * %rdi?

🐶  leaq (,%rdi,9), %rax
🐈  movq (,%rdi,9), %rax
🐑  leaq (%rdi,%rdi,8), %rax
🦄  movq (%rdi,%rdi,8), %rax
🥶  We’re lost…

21



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Feelings Check:
LEA & MOV?

22



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Control Flow

23

long max(long x, long y)
{
  long max;
  if (x > y) {
    max = x;
  } else {
    max = y;
  }
  return max;
}

max:
  ???
  movq   %rdi, %rax
  ??? 
  ???
  movq   %rsi, %rax
  ???
  ret

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Control Flow

24

max:
  if x <= y then jump to else
  movq   %rdi, %rax
  jump to done
else:
  movq   %rsi, %rax
done:
  ret

long max(long x, long y)
{
  long max;
  if (x > y) {
    max = x;
  } else {
    max = y;
  }
  return max;
}

Conditional jump

Unconditional jump

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Conditionals and Control Flow
o Conditional branch/jump

• Jump to somewhere else if some condition is true, 
otherwise execute next instruction

o Unconditional branch/jump
• Always jump when you get to this instruction

o Together, they can implement most control flow constructs 
in high-level languages:
• if (condition) then {…} else {…}

• while (condition) {…}

• do {…} while (condition)

• for (initialization; condition; iterative) {…}

• switch {…} 25



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

x86 Control Flow
o Condition codes
o Conditional and unconditional branches
o Loops
o Switches

26



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Processor State (x86-64, partial)
o Information about 

currently executing 
program
• Temporary data

( %rax, … )
• Location of runtime 

stack ( %rsp )
• Location of current 

code control point
( %rip, … )

27

%rip

current top of the Stack

Program Counter
(instruction pointer)

Registers

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Processor State (x86-64, partial)
o Information about 

currently executing 
program
• Temporary data

( %rax, … )
• Location of runtime 

stack ( %rsp )
• Location of current 

code control point
( %rip, … )

• Status of recent tests
( CF, ZF, SF, OF )
• Single bit registers: 28

%rip

current top of the Stack

Program Counter
(instruction pointer)

CF ZF SF OF Condition Codes

Registers

%rsp

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Condition Codes (Implicit Setting)
 

29

Not set by lea instruction (beware!)

CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Condition Codes (Explicit Setting: 
Compare)
o Explicitly set by Compare instruction

• cmpq s, d  sets flags based on d-s, but doesn’t store 
d-s

• CF=1  if carry out from MSB (i.e unsigned comparison)
• ZF=1  if  a==b
• SF=1  if  (b-a)<0  (if MSB is 1)
• OF=1  if signed overflow
(a>0 && b<0 && (b-a)>0) || 
(a<0 && b>0 && (b-a)<0)

30

CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Condition Codes (Explicit Setting: Test)

o Explicitly set by Test instruction
• testq src2, src1
• testq a, b  sets flags based on a&b, but doesn’t store 
a&b
• Useful to have one of the operands be a mask

• Can’t have carry out (CF) or overflow (OF)
• ZF=1  if  a&b==0
• SF=1  if  a&b<0  (signed)

31

CF ZF SF OFCarry Flag Zero Flag Sign Flag Overflow Flag



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Using Condition Codes:  Jumping
o j* Instructions

• Jumps to target (an address) based on condition codes

32

Instruction Condition Description

jmp target 1 Unconditional

je  target ZF Equal / Zero

jne target ~ZF Not Equal / Not Zero

js  target SF Negative

jns target ~SF Nonnegative

jg  target ~(SF^OF)&~ZF Greater (Signed)

jge target ~(SF^OF) Greater or Equal (Signed)

jl  target (SF^OF) Less (Signed)

jle target (SF^OF)|ZF Less or Equal (Signed)

ja  target ~CF&~ZF Above (unsigned “>”)

jb  target CF Below (unsigned “<“)



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Using Condition Codes:  Setting
o set* Instructions

• Set low-order byte of dst to 0 or 1 based on condition codes
• Does not alter remaining 7 bytes

33

Instruction Condition Description

sete  dst ZF Equal / Zero

setne dst ~ZF Not Equal / Not Zero

sets  dst SF Negative

setns dst ~SF Nonnegative

setg  dst ~(SF^OF)&~ZF Greater (Signed)

setge dst ~(SF^OF) Greater or Equal (Signed)

setl  dst (SF^OF) Less (Signed)

setle dst (SF^OF)|ZF Less or Equal (Signed)

seta  dst ~CF&~ZF Above (unsigned “>”)

setb  dst CF Below (unsigned “<”)



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Reminder:  x86-64 Integer Registers
o Accessing the low-order byte:

34

%rsp %spl

%r8b%r8
%r9b%r9
%r10b%r10
%r11b%r11
%r12b%r12
%r13b%r13
%r14b%r14
%r15b%r15

%al%rax
%bl%rbx
%cl%rcx
%dl%rdx
%sil%rsi
%dil%rdi

%bpl%rbp



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Reading Condition Codes
o set* Instructions

• Set a low-order byte to 0 or 1 based on condition codes
• Operand: byte register (e.g. al, dl) or byte in memory
• Do not alter remaining bytes in register

• Use movzbq (zero-extended mov) to fill register

35

int gt(long x, long y)
{
  return x > y;
}

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

cmpq   %rsi, %rdi   #
setg   %al          #
movzbq %al, %rax    #
ret 



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Reading Condition Codes
o set* Instructions

• Set a low-order byte to 0 or 1 based on condition codes
• Operand: byte register (e.g. al, dl) or byte in memory
• Do not alter remaining bytes in register

• Use movzbq (zero-extended mov) to fill register

36

int gt(long x, long y)
{
  return x > y;
}

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

cmpq   %rsi, %rdi   # Compare x:y
setg   %al          # Set when >
movzbq %al, %eax    # Zero rest of %rax
ret 



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Aside:  movz and movs
movz_ _  src, regDest # Move with zero extension

movs_ _  src, regDest # Move with sign extension

• Copy from a smaller source value to a larger destination
• Source can be memory or register;  Destination must be a register
• Fill remaining bits of dest with zero (movz) or sign bit (movs)

movzSD / movsSD:
S – size of source (b = 1B, w = 2)
D – size of dest (w = 2B, l = 4, q = 8)

Example: 
movzbq %al, %rbx

37

0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0x?? 0xFF

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0xFF



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Aside:  movz and movs
movz_ _  src, regDest # Move with zero extension

movs_ _  src, regDest # Move with sign extension

• Copy from a smaller source value to a larger destination
• Source can be memory or register;  Destination must be a register
• Fill remaining bits of dest with zero (movz) or sign bit (movs)

movzSD / movsSD:
S – size of source (b = 1B, w = 2)
D – size of dest (w = 2B, l = 4, q = 8)

 
movsbl (%rax), %ebx

38

Note: In x86-64, any instruction that 
generates a 32-bit (long word) value 
for a register also sets the high-order 
portion of the register to 0. Good 
example on p. 184 in the textbook.

Copy 1 byte from memory into 
8-byte register & sign extend it

0x00 0x00 0x7F 0x80 0xC6 0x1F 0xA4 0xE8

0x00 0x00 0x00 0x00 0xFF 0xFF 0xFF 0x80

... 0x?? 0x?? 0x80 0x?? 0x?? 0x?? ...



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

How do we feel about 
condition codes?

39



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Technical Summary
o Memory Addressing Modes:  The addresses 

used for accessing memory in mov (and other) 
instructions can be computed in several different 
ways
• Base register, index register, scale factor, and 

displacement map well to pointer arithmetic operations
o Control flow in x86 determined by status of 

Condition Codes
• Showed Carry, Zero, Sign, and Overflow, others exist 
• Set flags with arithmetic instructions (implicit) or 

Compare and Test (explicit), read with set instruction
• Jump instructions use flag values to determine next 

instruction to execute 40

https://en.wikipedia.org/wiki/Status_register#Common_flags


L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Instruction Set Architectures
o The ISA defines:

• The system’s state (e.g. registers, memory, program 
counter)

• The instructions the CPU can execute
• The effect that each of these instructions will have on 

the system state

41

CPU

MemoryPC

Registers



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Instruction Set Philosophies
o Complex Instruction Set Computing (CISC):  Add 

more and more elaborate and specialized 
instructions as needed 
• Lots of tools for programmers to use, but hardware 

must be able to handle all instructions
• x86-64 is CISC, but only a small subset of instructions 

encountered with Linux programs
o Reduced Instruction Set Computing (RISC):  

Keep instruction set small and regular
• Easier to build fast hardware
• Let software do the complicated operations by 

composing simpler ones
42



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Design Goals
o Complex Instruction Set Computing (CISC): 

Complete a task in as few instructions as possible
• Fetch instructions from memory as part of other 

instructions
• Minimize memory access (which takes a while)

o Reduced Instruction Set Computing (RISC):
All instructions should complete in a single clock 
cycle (FP mult can be ~30 cycles)
• Easier to build fast hardware
• Minimize complexity, maximize performance

43



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

What’s the ideology?

44



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Examining Ideology: Critical Reading
1. Go through descriptions, sales pitches, 

comparisons, really, any content
2. Highlight:

a. What’s assumed to be important?
b. What’s valued?
c. What’s emphasized? What’s given space?

3. Read through highlights, examine for themes
4. (ideally) Ask for how others see it! You’re always 

limited by your own perspective.

45



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Queering: Queer Reading
● Reading literature (texts, broadly) for 

heteronormative or identity binaries
○ Ideological assumptions! Assumed without question.
○ Are folks assumed to be straight? How much are are 

gender norms enforced?
○ e.g. look at letters from celibate monks, what 

happens if we assumed homonormativity? What 
happens if we assume other ideologies?

● More popular in 1980s/1990s, though still in use
○ Surfacing ideology’s much older than “queering”, this 

is just especially prevalent for me

46



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Design Goals
o Complex Instruction Set Computing (CISC): 

Complete a task in as few instructions as possible
• Fetch instructions from memory as part of other 

instructions
• Minimize memory access (which takes a while)

o Reduced Instruction Set Computing (RISC):
All instructions should complete in a single clock 
cycle (FP mult can be ~30 cycles)
• Easier to build fast hardware
• Minimize complexity, maximize performance

47



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Design Goals
o Complex Instruction Set Computing (CISC): 

Complete a task in as few instructions as possible
• Fetch instructions from memory as part of other 

instructions
• Minimize memory access (which takes a while)

o Reduced Instruction Set Computing (RISC):
All instructions should complete in a single clock 
cycle (FP mult can be ~30 cycles)
• Easier to build fast hardware
• Minimize complexity, maximize performance

48



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Design Goals
● “as few instructions as possible” -- minimalism
● “Minimize memory access” -- minimalism, 

efficiency
● Easy to build -- minimalism
● Emphasis on “fast” hardware -- efficiency, 

production, performance
● “Minimize complexity” -- minimalism
● “Maximize performance” -- I mean, it’s right there

49



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Ideology through Design Goals

● Minimalism, Efficiency, Performance
○ We’ve seen this before! We’ve seen this throughout!

● CISC & RISC are usually viewed as “different 
design philosophies”
○ How are they actually different?

50



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Ideology through Design Goals

● Minimalism, Efficiency, Performance
○ We’ve seen this before! We’ve seen this throughout!

● CISC & RISC are usually viewed as “different 
design philosophies”
○ How are they actually different?
○ Different goals, but both pursue efficiency, minimalism
○ Really, just this is just efficiency; minimalism is a 

means to an end

51



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

Different 
implementations, 
same ideology!
Most of “traditional” CS follows both of these

52



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

53



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

54



L02:  Memory & Data IL08: x86 Assembly II CSE351, Summer 2021

We’ll be doing this 
much more in 351!
I’m doing this with material for CSE351!

55


