W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

x86-64 Programming |

CSE 351 Summer 2021

Instructor:
Mara Kirdani-Ryan

SKATING DPHILL LIKE THIS
AMARZING. YEPRS OF GLIDING
DOMNHILL AND PUSHNG

]
g ’l
UPHILL, ANDNOW SUDDENLY | B
ITS GLIDING BOTHWAYS, 4 ;

Y, !m\ ‘i 4] |
) : v

@ A‘\F BUT C0OING € OR

ASSEMBLY MAKES YCU

Teaching Assistants:
Kashish Aggarwal
Nick Durand

Colton Jobes

Tim Mandzyuk

PEPENDS HOW YOU
WONT TO SFEND YOUR
LIFE. SEE, MY

PHILOSCPHY 15—

PYTHON. YOU DONTREAUIZE L=

HOW MUCH TTME YOU WERE
SPENDING ON THE BORING PRRTS BALD CHARACTER.

PARTS UNTIL YOU DON'T HAVE

MILES BAVIS 750

‘o*l
(N

%
A

http://www.youtube.com/watch?v=TLDflhhdPCg

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Gentle and Loving Reminders!

- hwb & hw7 due Friday (7/9) — 8pm
- hw8 due Monday (7/12) — 8pm

- Lab 1b due Friday at 8pm (7/9)

* Submit aisle manager.c, store client.c, and
lablBreflect.txt

w UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Gentle and Loving Reminders!

o Unit Summary 1 Due Monday 7/12!
* Submitted via Gradescope
* We're here to help! Especially if you're feeling stuck!
* Task 3 is going out today

- We want to give you an opportunity to reflect and
synthesize the material!

* Exams are pretty terrible for this!

UNIVERSITY of WASHINGTON LO7: x86 Programmingl . CSE351, Summer 2021

How are y’all feeling
today?

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Second Floor! Programs!

Values in modern
Processors S

Critical Analysis T e
Accessibility, agency Scale, Coherence | | e

Bl B Virtual Memo
and support | _ Memory Aloaton
Establishing and "_’_"gff'Tf“S*_ | prcedures,Sac
extending structures é{} Data Aays, Struct
How programs are = 1|1 tegers. Fioas
exe Cu te d by a l- B é(?SSéE.;?ig.(iJ?:l]ess))' B _ Deeper than we'll go

........................

processor __Physios (Transistors)

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Learning Objectives for Today!

« You should be able to:

O
O

Explain what an ISAis, in plain language

Explain the difference between registers and memory,
and the tradeoffs between using each

Explain the effects of mov and arithmetic x86
instructions

Translate single lines of arithmetic C code (memory
accesses and math) into assembly, and vice versa
Explain the growth of monopolies in every industry,
across the last 50 years

Explain the conditions that the x86 architecture and
the IBM PC were created in, and how that affected
their implementations

YA/ UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Architecture: the HW/SW Interface

Source code Compiler Architecture Hardware
Different applications Perform optimizations, Instruction set !Different |
or algorithms generate instructions implementations
(TTTT T mm------—- , Intel Pentium 4
: C Language I
|
| : Intel Core 2
1 | Program fmmm——mmm -
: A - '
| GCC e Intel Core i7
1 L _)
|
: Program : AMD Opteron
! I
' B
: AMD Athlon
: Clang
|
: Your : fommm s
| | |
' : | ARMv8 | ARM Cortex-A53
L | | (AArch64/A64) !
_________________ ,
___________ , Apple A7

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Definitions

o Architecture (ISA): The parts of a processor

design that one needs to understand to write
assembly code

* “What is directly visible to software”
* “Interface contract between HW and SW”

o Microarchitecture: Implementation of the
architecture

 CSE/EE 469

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Instruction Set Architectures
- The ISA defines:

* The system’s state (e.g. registers, memory, program
counter)

 The instructions the CPU can execute

 The effect that each of these instructions will have on

the system state
CPU

PC Memory

Registers

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

General ISA Design Decisions

- Instructions
* What instructions are available? What do they do?
* How are they encoded?

- Reqgisters
* How many registers are there?
* How wide are they?

- Memory
* How do you specify a memory location?

10

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Instruction Set Philosophies

o Complex Instruction Set Computing (CISC): Add
more and more elaborate and specialized
Instructions as needed

* Lots of tools for programmers to use, but hardware
must be able to handle all instructions

* x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs
o Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular
* Easier to build fast hardware

* Let software do the complicated operations by
composing simpler ones

11

YA/ UNIVERSITY of WASHINGTON

LO7: x86 Programming |

CSE351, Summer 2021

Dominant ISAs

®

intel

x86
Designer Intel, AMD
Bits 16-bit, 32-bit and 64-bit
Introduced 1978 (16-bit), 1985 (32-bit), 2003
(64-bit)
Design CISC
Type Register-memory

Encoding \Variable (1 to 15 bytes)

Endianness Little

Macbooks & PCs
(Core i3, i5, i7, i9)
x86-64 Instruction Set

ARM architectures

Designer ARM Holdings
Bits 32-bit, 64-bit
Introduced 1985; 31 years ago
Design RISC

Type Register-Register

AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and
32-bit instructions. ARMv7 user-
space compatibilitym

Encoding

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

RISC

Designer University of California,
Berkeley
Bits 32-64-128

Introduced 2010

Version unprivileged ISA 20191213,[1]
privileged ISA 20190608!2]

Design RISC

Type Load-store

Encoding Variable

Branching Compare-and-branch

Endianness Littlel!Il3!

Mostly research, though
some footholds in industry,
especially in embedded

12

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Writing Assembly Code? In 2021777

- You probably won’t but understanding assembly
IS the key to the machine-level execution model:

* Behavior of programs in the presence of bugs
- When high-level language model breaks down

* Tuning program performance
- Which optimizations are done by the compiler?
- Understanding sources of program inefficiency
* Implementing systems software
- The “states” of processes that the OS must manage
- Special units (timers, 1/O, etc.) inside processor!

* Fighting malicious software
- Distributed software is in binary form

13

YA/ UNIVERSITY of WASHINGTON

LO7: x86 Programming |

CSE351, Summer 2021

Assembly Programmer’s View

O

CPU

PC

Registers

Condition
Codes

Programmer-visible state

* PC: Program Counter ($rip in x86-64)
- Address of next instruction

* Named registers

- Together in “register file”

Addresses Memory
g d
* Code
Data

< > * Data

Instructions * Stack
<

+ Memory

- Heavily used program data

e Condition codes

- Store status information about most recent
arithmetic operation

- Used for conditional branching

= Byte-addressable array

= Code and user data

= |ncludes the Stack (for
supporting procedures)

14

w UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

x86-64 Assembly “Data Types”

- Integral data of 1, 2, 4, or 8 bytes
* Data values
* Addresses

- Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2 |

* Different registers for those (e.g. $xmm1, $ymm2)
* Come from extensions to x86 (SSE, AVX, ...)

No aggregate types such as arrays or structures
* Just contiguously allocated bytes in memory

- Two common syntaxes
* “AT&T”: used by our course, slides, textbook, gnu tools, ...

B Not coveret
In 351

—

(@)

* “Intel”: used by Intel documentation, Intel tools, ...
* Must know which you're reading

15

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

What is a Register?

- A'location in the CPU that stores a small amount
of data, which can be accessed very quickly
(once every clock cycle)

- Registers have names, not addresses
* In assembly, they start with % (e.g. $rsi)

- Registers are at the heart of assembly
programming

* They are a precious commodity in all architectures, but
especially x86

16

YA/ UNIVERSITY of WASHINGTON

x86-64 Integer Registers — 64 bits

LO7: x86 Programming |

CSE351, Summer 2021

wide
srax %eax
$rbx %$ebx
Irex %ecx
$rdx edx
srsi %esi
Srdi sedi
%rsp %esp
srbp sebp

%r8 $r8d

%r9 $r9d

$rlo0 $rl10d
srll $rlld
$rl2 srl2d
%rl3 $rl3d
srl4d srldd
%rl5 $rl15d

* Can reference low-order 4 bytes (also low-order 2 & 1

bytes)

17

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Some History: IA32 Registers — 32
bits wide

Teax sax %ah %al accumulate
" $ecx sCx sch scl counter
4
= Tedx $dx %dh sd1 data
Q<
g $ebx Sbx %bh %bl base
o
no sesi 3si source index
g Sedi sdi destination index
%esp ssp stack pointer
%ebp sbp base pointer
\)
Y
16-bit virtual registers Name Origin

(backwards compatibility) (mostly obsolete)
18

YA/ UNIVERSITY of WASHINGTON LO7: x86 Programming |

CSE351, Summer 2021

@)

@)

Memory vs. Registers

Addresses vs. Names
e 0x7FFFD024C3DC %rdi

Big vs. Small

 ~8 GIiB (16 x8B)=128B

Slow vs. Fast

e ~50-100 ns sub-nanosecond timescale
Dynamic vs. Static

* Allocate as Fixed hardware allocation

needed

19

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Three Basic Kinds of Instructions

1) Transfer data between memory and register

* [oad data from memory into register

- $reg = Mem[address] Remember: Memory
is indexed just like an

array of bytes!

* Store register data into memory
- Mem[address] = $reg

2) Perform arithmetic operation on register or
memory data

°c = a + b; Z = X <L y; 1 = h & g;

3) Control flow: what instruction to execute next
* Unconditional jumps to/from procedures
* Conditional branches

20

YA/ UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Operand types

o Immediate: Constant integer data srax
 Examples: $0x400, $-533 srex
* Like C literal, but prefixed with *$” e rdx
* Encoded with 1, 2, 4, or 8 bytes > b
depending on the instruction oI OX
- Register: 1 of 16 integer registers SISl
 Examples: %$rax, %rl3 srdi
* But $rsp reserved for special use %rSP
* Others have special uses for particular °rb
. . srop
Instructions
o Memory: Consecutive bytes of o N

memory at a computed address
* Simplest example: (%$rax)

* Various other “address modes”)1

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

x86-64 Introduction

- Data transfer instruction (mov)
- Arithmetic operations
- Memory addressing modes
* swap example
- Address computation instruction (1ea)

22

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Moving Data

- General form: mov source, destination
* Missing letter () specifies size of operands

* Note that due to backwards-compatible support for
8086 programs (16-bit machines!), “word” means 16
bits = 2 bytes in x86 instruction names

* Lots of these in typical code

o movb src, dst ¢ movl src, dst
* Move 1-byte “byte” = Move 4-byte “long word”
o MOVwW Src, dst ¢ movqg src, dst

* Move 2-byte “word” = Move 8-byte “quad word”

23

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Operand Combinations

Source Dest Src, Dest C Analog
4 Reg movg $0x4, Srax var a = 0x4;
Imm
Mem movg $-147, (%rax) *p a = -147;
movq <R Reg movg %Srax, %rdx var d = var a;
€8
Mem movg %rax, (%rdx) *p d = var a;
Mem Reg movg (%rax), %rdx var d = *p a;

« Cannot do memory-memory transfer with a single
Instruction

= How would you do it?

24

YA/ UNIVERSITY of WASHINGTON LO7: x86 Programming |

CSE351, Summer 2021

Some Arithmetic Operations

- Binary (two-operand) Instructions:

|: Maximum of one J m-

memory operand addq src, dst

o Beware subg src, dst
argument order!

o No distinction
between signed sarq src, dst
and unsigned

- Only arithmetic vs.
logical shifts

o 'r3 = rl + r2"?

imulq src, dst

shrq src, dst

shlq src, dst
operand size specifier

xorq src, dst

dst = dst + src

dst = dst — src

dst = dst * src

dst = dst >> src

dst = dst >> src

dst = dst << src

dst = dst / src

(dst += src)

signed mult

Arithmetic

Logical

(same as
salq)

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Just to check in!

Which of the following would implement:
Trcx = Ssrax + srbx

4
¥ movg %rax,%rcx; addq %rbx, %$rcx

Vv movqg (%rbx) ,%rcx ;addq (%rax),h %rcx
o :
&

26

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Some Arithmetic Operations

- Unary (one-operand) Instructions:

__Format__| Computation | _________

incqg dst dst=dst+1 increment

decq dst dst=dst—1 decrement

negq dst dst =—dst negate

notqg dst dst = ~dst bitwise complement

- See CSPP Section 3.5.5 for more instructions:
mulqg, cqto, 1divqg, divqg

27

YA/ UNIVERSITY of WASHINGTON

LO7: x86 Programming |

Arithmetic Example

{
long t1 = x + y;
long t2 = tl1 * 3;
return t2;

long simple arith(long x,

long vy)

‘S\\\\

simple arith:
addqg rdi,
imulqg $3,
movq $rsi,
ret

$rsi
$rsi
$rax

CSE351, Summer 2021

Cnegiter | usels)

Srdi 1°t argument (x)
srsi 2" argument (y)
$rax return value

y += X;

y *= 3;

long r = y;

return r;

28

YA/ UNIVERSITY of WASHINGTON

LO7: x86 Programming |

CSE351, Summer 2021

Example of Basic Addressing Modes

void swap (long *xp, long *yp)
{
long t0 = *xp;
long tl = *yp;
*Xp = tl;
*vp = tO0;
}
swap:
movqg (3srdil), S%Srax
movqg (%rsl), S%Srdx
movqg <srdx, (%srdi)
movq srax, (%srsi)
ret

29

YA/ UNIVERSITY of WASHINGTON LO7: x86 Programming |

Understanding swap ()

CSE351, Summer 2021

void swap (long *xp, long *yp) Registers Memory
{ .
$rd o—|—>
long t0 = *xp; —
long tl = *yp; $rsi e
*Xp = tl,‘ O -~
sYaXx
*yp = t0;
} srdx
swap: (Register Variable)
movq (3rdi), %Srax $rdi & xp
movq o(%rsi),o%rc.ilx srsi © yp
movq frdX, (frd:!_) Srax & 0
movqg <srax, (srsi) o rdx & 1
ret L)

30

YA/ UNIVERSITY of WASHINGTON

Understanding swap ()

LO7: x86 Programming |

Registers Memory Word
Address
srdi 0x120 0x120
rsi 0x100 Ox118
o 0x110

s raXx
0x108

Srdx
0x100

swap :
movqg (%rdi), *XP
movq (%rsi), * v
movq srdx, tl
movq <srax, t0

ret

CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

Understanding swap ()

LO7: x86 Programming |

movq
ret

(%
movqg (5%
movq sr
ST

Registers Memory Word
Address
srdi 0x120 0x120
5rsi| 0x100 Ox118
srax 123 0x110
0x108
Trdx
0x100
swap :
movq *Xp

CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

Understanding swap ()

LO7: x86 Programming |

movq
movq
movq
ret

movqg (5r
(S

Registers Memory Word
Address
>rdi 0x120 0x120
5rsi| 0x100 Ox118
S rax 123 0x110
0x108
Srdx 456
0x100
swap:
*Xp

CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

Understanding swap ()

LO7: x86 Programming |

ret

Registers Memory Word
Address
srdi 0x120 0x120
5rsi| 0x100 Ox118
Srax 123 0x110
0x108
Srdx 456
0x100
swap:
movqg (5r *Xp
movqg (sr *yp
movq sr tl
movq sr t0

CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

Understanding swap ()

LO7: x86 Programming |

movq

movq sr
5T

movq
ret

Registers Memory Word
Address
>rdi 0x120 0x120
5rsi| 0x100 Ox118
S rax 123 0x110
0x108
Srdx 456
0x100
swap:
movq *XP

CSE351, Summer 2021

UNIVERSITY of WASHINGTON LO7: x86 Programmingl . CSE351, Summer 2021

How are we feeling
about swap()?

w UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Memory Addressing Modes: Basic

o Indirect: (R) Mem[Reg[R]]
* Data in register R specifies the memory address
* Like pointer dereference in C

 Example: movqg (%rcx), %rax

- Displacement: D (R) Mem|[Reg[R]+D]

* Data in register R specifies the start of some memory
region

* Constant displacement D specifies the offset from that
address

* Example: movqg 8 ($rbp), %$rdx

37

w UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Complete Memory Addressing Modes

- General:
D(Rb,Ri,S) Mem|[Reg[Rb]+Reg[Ri]*S+D]
- Rb: Base register (any register)
- Ri: Index register (any register except $rsp)
- S: Scale factor (1, 2, 4, 8) — why these numbers?
- D: Constant displacement value (a.k.a. immediate)

- Special cases (see CSPP Figure 3.3 on p.181)
D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D] (S=1)
°* (Rb,Ri,S) Mem|[Reg[Rb]+Reg[Ri]*S] (D=0)

°* (Rb,Ri) Mem[Reg[Rb]+Reg[R1i]] (S=1, D=0)

* (,R1,9) Mem[Reg[Ri]*S] (Rb=0, D=0)

38

UNIVERSITY of WASHINGTON LO7: x86 Programmingl . CSE351, Summer 2021

How are we feeling
about addressing
modes?

We’ll do more on Friday!

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Summary

- We're learning about x86-64 here!

* There are 3 types of operands in x86-64
- Immediate, Register, Memory

* There are 3 types of instructions in x86-64
- Data transfer, Arithmetic, Control Flow

- Memory Addressing Modes: The addresses
used for accessing memory in mov (and other)
instructions can be computed in several different
ways
* Base register, index register, scale factor, and

displacement map well to pointer arithmetic operations

40

UNIVERSITY of WASHINGTON LO7: x86 Programmingl . CSE351, Summer 2021

Breakouts!
Floorplan Critique!

W UNIVERSITY of WASHINGTON LO7: x86 Programming | CSE351, Summer 2021

Giving and Receiving Critique

« Mandatory compliment sandwiches!
© One thing you like
© One thing you’d like to improve
o One thing you enjoy or you're excited about
« Our goal is to help each other improve!
o We’re here to help you!
O Be here to help each other!

42

UNIVERSITY of WASHINGTON LO7: x86 Programmingl . CSE351, Summer 2021

Breakouts!
Floorplan Critique!

