
L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

x86-64 Programming I
CSE 351 Summer 2021
Instructor:
Mara Kirdani-Ryan

Teaching Assistants:
Kashish Aggarwal
Nick Durand
Colton Jobes
Tim Mandzyuk

http://www.youtube.com/watch?v=TLDflhhdPCg

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Gentle and Loving Reminders!
o hw6 & hw7 due Friday (7/9) – 8pm
o hw8 due Monday (7/12) – 8pm

o Lab 1b due Friday at 8pm (7/9)
• Submit aisle_manager.c, store_client.c, and
lab1Breflect.txt

2

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Gentle and Loving Reminders!
o Unit Summary 1 Due Monday 7/12!

• Submitted via Gradescope
• We’re here to help! Especially if you’re feeling stuck!
• Task 3 is going out today

o We want to give you an opportunity to reflect and
synthesize the material!
• Exams are pretty terrible for this!

3

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

How are y’all feeling
today?

4

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Second Floor! Programs!
● Values in modern

processors
● Critical Analysis
● Accessibility, agency

and support
● Establishing and

extending structures
● How programs are

executed by a
processor

5

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Learning Objectives for Today!
● You should be able to:

○ Explain what an ISA is, in plain language
○ Explain the difference between registers and memory,

and the tradeoffs between using each
○ Explain the effects of mov and arithmetic x86

instructions
○ Translate single lines of arithmetic C code (memory

accesses and math) into assembly, and vice versa
○ Explain the growth of monopolies in every industry,

across the last 50 years
○ Explain the conditions that the x86 architecture and

the IBM PC were created in, and how that affected
their implementations

6

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

C Language

Architecture: the HW/SW Interface

7

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Definitions
o Architecture (ISA): The parts of a processor

design that one needs to understand to write
assembly code
• “What is directly visible to software”
• “Interface contract between HW and SW”

o Microarchitecture: Implementation of the
architecture
• CSE/EE 469

8

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Instruction Set Architectures
o The ISA defines:

• The system’s state (e.g. registers, memory, program
counter)

• The instructions the CPU can execute
• The effect that each of these instructions will have on

the system state

9

CPU

MemoryPC

Registers

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

General ISA Design Decisions
o Instructions

• What instructions are available? What do they do?
• How are they encoded?

o Registers
• How many registers are there?
• How wide are they?

o Memory
• How do you specify a memory location?

10

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Instruction Set Philosophies
o Complex Instruction Set Computing (CISC): Add

more and more elaborate and specialized
instructions as needed
• Lots of tools for programmers to use, but hardware

must be able to handle all instructions
• x86-64 is CISC, but only a small subset of instructions

encountered with Linux programs
o Reduced Instruction Set Computing (RISC):

Keep instruction set small and regular
• Easier to build fast hardware
• Let software do the complicated operations by

composing simpler ones
11

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Dominant ISAs

12

Macbooks & PCs
(Core i3, i5, i7, i9)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Mostly research, though
some footholds in industry,
especially in embedded

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Writing Assembly Code? In 2021???
o You probably won’t but understanding assembly

is the key to the machine-level execution model:
• Behavior of programs in the presence of bugs

• When high-level language model breaks down
• Tuning program performance

• Which optimizations are done by the compiler?
• Understanding sources of program inefficiency

• Implementing systems software
• The “states” of processes that the OS must manage
• Special units (timers, I/O, etc.) inside processor!

• Fighting malicious software
• Distributed software is in binary form

13

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

CPU

Assembly Programmer’s View

o Programmer-visible state
• PC: Program Counter (%rip in x86-64)

• Address of next instruction
• Named registers

• Together in “register file”
• Heavily used program data

• Condition codes
• Store status information about most recent

arithmetic operation
• Used for conditional branching 14

PC
Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

❖ Memory
▪ Byte-addressable array

▪ Code and user data

▪ Includes the Stack (for
supporting procedures)

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

x86-64 Assembly “Data Types”
o Integral data of 1, 2, 4, or 8 bytes

• Data values
• Addresses

o Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2
• Different registers for those (e.g. %xmm1, %ymm2)
• Come from extensions to x86 (SSE, AVX, …)

o No aggregate types such as arrays or structures
• Just contiguously allocated bytes in memory

o Two common syntaxes
• “AT&T”: used by our course, slides, textbook, gnu tools, …
• “Intel”: used by Intel documentation, Intel tools, …
• Must know which you’re reading

15

Not covered
In 351

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

What is a Register?
o A location in the CPU that stores a small amount

of data, which can be accessed very quickly
(once every clock cycle)

o Registers have names, not addresses
• In assembly, they start with % (e.g. %rsi)

o Registers are at the heart of assembly
programming
• They are a precious commodity in all architectures, but

especially x86

16

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

x86-64 Integer Registers – 64 bits
wide

• Can reference low-order 4 bytes (also low-order 2 & 1
bytes)

17

%r8d%r8
%r9d%r9
%r10d%r10
%r11d%r11
%r12d%r12
%r13d%r13
%r14d%r14
%r15d%r15

%rsp %esp

%eax%rax
%ebx%rbx
%ecx%rcx
%edx%rdx
%esi%rsi
%edi%rdi

%ebp%rbp

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Some History: IA32 Registers – 32
bits wide

18

%esi %si

%edi %di

%esp %sp

%ebp %bp

%eax %ax %ah %al

%ecx %cx %ch %cl

%edx %dx %dh %dl

%ebx %bx %bh %bl

16-bit virtual registers
(backwards compatibility)

ge
n

er
al

 p
u

rp
o

se

accumulate

counter

data

base

source index

destination index

stack pointer

base pointer

Name Origin
(mostly obsolete)

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Memory vs. Registers
o Addresses vs. Names

• 0x7FFFD024C3DC %rdi

o Big vs. Small
• ~ 8 GiB (16 x 8 B) = 128 B

o Slow vs. Fast
• ~50-100 ns sub-nanosecond timescale

o Dynamic vs. Static
• Allocate as Fixed hardware allocation

needed

19

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Three Basic Kinds of Instructions
1) Transfer data between memory and register

• Load data from memory into register
• %reg = Mem[address]

• Store register data into memory
• Mem[address] = %reg

2) Perform arithmetic operation on register or
memory data
• c = a + b; z = x << y; i = h & g;

3) Control flow: what instruction to execute next
• Unconditional jumps to/from procedures
• Conditional branches

20

Remember: Memory
is indexed just like an
array of bytes!

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Operand types
o Immediate: Constant integer data

• Examples: $0x400, $-533
• Like C literal, but prefixed with ‘$’
• Encoded with 1, 2, 4, or 8 bytes

depending on the instruction
o Register: 1 of 16 integer registers

• Examples: %rax, %r13
• But %rsp reserved for special use
• Others have special uses for particular

instructions
o Memory: Consecutive bytes of

memory at a computed address
• Simplest example: (%rax)
• Various other “address modes”

21

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

x86-64 Introduction
o Data transfer instruction (mov)
o Arithmetic operations
o Memory addressing modes

• swap example
o Address computation instruction (lea)

22

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Moving Data
o General form: mov_ source, destination

• Missing letter (_) specifies size of operands
• Note that due to backwards-compatible support for

8086 programs (16-bit machines!), “word” means 16
bits = 2 bytes in x86 instruction names

• Lots of these in typical code

o movb src, dst
• Move 1-byte “byte”

o movw src, dst
• Move 2-byte “word”

23

❖ movl src, dst
▪ Move 4-byte “long word”

❖ movq src, dst
▪ Move 8-byte “quad word”

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Operand Combinations

Source Dest Src, Dest C Analog

movq

 Imm
Reg movq $0x4, %rax

Mem movq $-147, (%rax)

Reg
Reg movq %rax, %rdx

Mem movq %rax, (%rdx)

 Mem Reg movq (%rax), %rdx

24

❖ Cannot do memory-memory transfer with a single
instruction

▪ How would you do it?

var_a = 0x4;

*p_a = -147;

var_d = var_a;

*p_d = var_a;

var_d = *p_a;

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Some Arithmetic Operations
o Binary (two-operand) Instructions:

o Beware
argument order!

o No distinction
between signed
and unsigned

• Only arithmetic vs.
logical shifts

o “r3 = r1 + r2”?
25

Format Computation

addq src, dst dst = dst + src (dst += src)

subq src, dst dst = dst – src

imulq src, dst dst = dst * src signed mult

 sarq src, dst dst = dst >> src Arithmetic

 shrq src, dst dst = dst >> src Logical

 shlq src, dst dst = dst << src (same as
salq)

 xorq src, dst dst = dst ^ src

Maximum of one
memory operand

operand size specifier

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Just to check in!
Which of the following would implement:

%rcx = %rax + %rbx

🧡 addq %rax,%rbx,%rcx
💛 addq %rcx,%rax,%rbx
💚 movq %rax,%rcx; addq %rbx, %rcx
💙 movq (%rbx),%rcx ;addq (%rax),%rcx
🥶 We’re lost…

26

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Some Arithmetic Operations
o Unary (one-operand) Instructions:

o See CSPP Section 3.5.5 for more instructions:
mulq, cqto, idivq, divq

27

Format Computation

incq dst dst = dst + 1 increment

decq dst dst = dst – 1 decrement

negq dst dst = –dst negate

notq dst dst = ~dst bitwise complement

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Arithmetic Example

28

long simple_arith(long x, long y)
{
 long t1 = x + y;
 long t2 = t1 * 3;
 return t2;
}

Register Use(s)

%rdi 1st argument (x)

%rsi 2nd argument (y)

%rax return value

y += x;
y *= 3;
long r = y;
return r;

simple_arith:
 addq %rdi, %rsi
 imulq $3, %rsi
 movq %rsi, %rax
 ret

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Example of Basic Addressing Modes

29

void swap(long *xp, long *yp)
{
 long t0 = *xp;
 long t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
 movq (%rdi), %rax
 movq (%rsi), %rdx
 movq %rdx, (%rdi)
 movq %rax, (%rsi)
 ret

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Understanding swap()

30

%rdi

%rsi

%rax

%rdx

Registers Memory

Register Variable

%rdi ⇔ xp
%rsi ⇔ yp
%rax ⇔ t0
%rdx ⇔ t1

void swap(long *xp, long *yp)
{
 long t0 = *xp;
 long t1 = *yp;
 *xp = t1;
 *yp = t0;
}

swap:
 movq (%rdi), %rax
 movq (%rsi), %rdx
 movq %rdx, (%rdi)
 movq %rax, (%rsi)
 ret

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Understanding swap()

31

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

Registers Memory

123

456

123

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Understanding swap()

32

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

Registers Memory

123

456

123

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Understanding swap()

33

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

456

123

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Understanding swap()

34

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

456

456

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Understanding swap()

35

0x120

0x118

0x110

0x108

0x100

Word
Address

%rdi

%rsi

%rax

%rdx

0x120

0x100

123

456

Registers Memory

123

123

456

swap:
 movq (%rdi), %rax # t0 = *xp
 movq (%rsi), %rdx # t1 = *yp
 movq %rdx, (%rdi) # *xp = t1
 movq %rax, (%rsi) # *yp = t0
 ret

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

How are we feeling
about swap()?

36

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Memory Addressing Modes: Basic
o Indirect: (R) Mem[Reg[R]]

• Data in register R specifies the memory address
• Like pointer dereference in C
• Example: movq (%rcx), %rax

o Displacement: D(R) Mem[Reg[R]+D]
• Data in register R specifies the start of some memory

region
• Constant displacement D specifies the offset from that

address
• Example: movq 8(%rbp), %rdx

37

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Complete Memory Addressing Modes
o General:

• D(Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S+D]
• Rb: Base register (any register)
• Ri: Index register (any register except %rsp)
• S: Scale factor (1, 2, 4, 8) – why these numbers?
• D: Constant displacement value (a.k.a. immediate)

o Special cases (see CSPP Figure 3.3 on p.181)
• D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D] (S=1)

• (Rb,Ri,S) Mem[Reg[Rb]+Reg[Ri]*S] (D=0)
• (Rb,Ri) Mem[Reg[Rb]+Reg[Ri]] (S=1,D=0)

• (,Ri,S) Mem[Reg[Ri]*S] (Rb=0,D=0) 38

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

How are we feeling
about addressing
modes?
We’ll do more on Friday!

39

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Summary
o We’re learning about x86-64 here!

• There are 3 types of operands in x86-64
• Immediate, Register, Memory

• There are 3 types of instructions in x86-64
• Data transfer, Arithmetic, Control Flow

o Memory Addressing Modes: The addresses
used for accessing memory in mov (and other)
instructions can be computed in several different
ways
• Base register, index register, scale factor, and

displacement map well to pointer arithmetic operations
40

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Breakouts!
Floorplan Critique!

41

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Giving and Receiving Critique
● Mandatory compliment sandwiches!

○ One thing you like
○ One thing you’d like to improve
○ One thing you enjoy or you’re excited about

● Our goal is to help each other improve!
○ We’re here to help you!
○ Be here to help each other!

42

L02: Memory & Data IL07: x86 Programming I CSE351, Summer 2021

Breakouts!
Floorplan Critique!

43

