
L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point
CSE 351 Summer, 2021

Instructor:
Mara Kirdani-Ryan

Teaching Assistants:
Kashish Aggarwal
Nick Durand
Colton Jobes
Tim Mandzyuk

http://www.youtube.com/watch?v=-047ko4v05s

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Gentle and Loving Reminders!
o Everything’s due at 8pm, unless we’ve talked!
o hw4, hw5 due tonight
o Lab 1a due tonight!!!

• Submit pointer.c and lab1Areflect.txt
o Lab 1b due in a week (7/9), with hw6, hw7

• Submit aisle_manager.c, store_client.c and
lab1Breflect.txt

o US1 due the monday after (7/12)
• We’re here to help! Help each other!

o There’s a holiday! Find some joy, not working!

2

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

1st Floorplan Critique on Wednesday!
● Last lecture of Unit #1!
● Wednesday, July 7, we’ll have some in-class

time to give each other feedback on unit
summaries
○ Come with something to get feedback on!
○ It doesn’t need to be polished, early designs are ok!
○ Most designers apologize for sketches, which is silly
○ A few prototypes, a design you’re excited about,

“what you have so far”, all ok!
● Unit summaries will be due Monday, July 12

3

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

How are you feeling today?
How do you feel about
learning?

4

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Learning Objectives
● At the end of this lecture, you should be able to...

○ Convert between floating point and decimal encoding
○ Give examples of special cases in floating point,

along with their binary representations
○ Explain why we shouldn’t compare floats for equality
○ Understand the limitations of floating point

representations
○ Give a few examples of knowledge-shame

manifesting in computing
○ Reflect on this unit to make a floorplan!

■ Though, this one you could do earlier...

5

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Fixed Point Representation
o Implied binary point. Two example schemes:

#1: the binary point is between bits 2 and 3
b7 b6 b5 b4 b3 [.] b2 b1 b0

#2: the binary point is between bits 4 and 5
b7 b6 b5 [.] b4 b3 b2 b1 b0

o Fixed point placement is a tradeoff between range
and precision -- both are fixed!
• range: difference between largest and smallest numbers possible
• precision: smallest possible difference between any two numbers

o Hard to pick how much you need of each!

6

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point Representation
o Analogous to scientific notation

• In Decimal:
• Not 12000000, but 1.2 x 107 In C: 1.2e7
• Not 0.0000012, but 1.2 x 10-6 In C: 1.2e-6

• In Binary:
• Not 11000.000, but 1.1 x 24

• Not 0.000101, but 1.01 x 2-4

o We have to divvy up bits (32) between:
• the sign (1 bit)
• the mantissa (significand)
• the exponent

7

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Scientific Notation (Decimal)

o Normalized form: exactly one digit (non-zero) to
left of decimal point

o Alternatives to representing 1/1,000,000,000
• Normalized: 1.0×10-9

• Not normalized: 0.1×10-8,10.0×10-10

8

6.02
10

 × 1023

radix (base)decimal point

exponentmantissa

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Scientific Notation (Binary)

o floating point from the “floating” of the binary point
• Declare such variable in C as float (or double)

9

1.01
2
 × 2-1

radix (base)binary point

exponentmantissa

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Scientific Notation Translation
o Convert from scientific notation to binary point

• Multiply by shifting the decimal until the exponent
disappears

• Ex: 1.0112 x 24 = 101102 = 2210
• Ex: 1.0112 x 2-2 = 0.010112 = 0.3437510
•

o Convert from binary point to normalized scientific
• Distribute exponents until binary point is to the right of

a single digit
• Ex: 1101.0012 = 1.1010012 x 23

10

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point Topics
o Fractional binary numbers
o IEEE floating-point standard
o Floating-point operations and rounding
o Floating-point in C

o There are many more details that we won’t cover
• It’s a 58-page standard…

11

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

IEEE Floating Point
o IEEE 754

• 1985, uniform standard for floating point arithmetic
• Main idea: make numerically sensitive programs portable
• Specifies two things: representation and results of operations
• Now supported by all major CPUs!

o Driven by numerical concerns
• Scientists/numerical analysts want them to be as real as possible
• Engineers want them to be easy to implement and fast

• Scientists mostly won out
• Nice standards for rounding, overflow, underflow, but...
• Hard to make fast in hardware
• Float ops can be an order of magnitude slower than integer ops!
• Also, much more energy intensive, see BTC

12

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point Encoding
o Use normalized, base 2 scientific notation:

• Value: ±1 × Mantissa × 2Exponent

• Bit Fields: (-1)S × 1.M × 2(E–bias)

o Representation Scheme:
• Sign bit (0 is positive, 1 is negative)
• Mantissa (a.k.a. significand) is the fractional part of the

number in normalized form and encoded in bit vector M
• Exponent weights the value by a (possibly negative)

power of 2 and encoded in the bit vector E

13

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Bias Field: Allow negative exponents
● Bias = 2w-1-1
● E = Exponent + bias (or Exponent = E - Bias)
● IEEE float have w=8, bias=127

● Exponent = 1, E = 1 + 127 = 128
● Exponent = 127; E = 127 + 127 = 254
● Exponent = -63; E = -63 + 127 = 64

● E results from signed arithmetic, represent as
unsigned

14

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

The Mantissa (Fraction) Field

o Note the implicit 1 in front of the M bit vector
• Ex: 0b 0011 1111 1100 0000 0000 0000 0000 0000

is read as 1.12 = 1.510, not 0.12 = 0.510
• Gives us an extra bit of precision

o Mantissa “limits”
• Low values near M = 0b0…0 are close to 2Exp

• High values near M = 0b1…1 are close to 2Exp+1
15

 (-1)S x (1 . M) x 2(E–bias)

S E M
31 30 23 22 0

1 bit 8 bits 23 bits

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Normalized FP Conversions
o FP → Decimal
1. Append the bits of M to

implicit leading 1 to
form the mantissa.

2. Multiply the mantissa
by 2E – bias.

3. Multiply the sign (-1)S.
4. Multiply out the

exponent by shifting
the binary point.

5. Convert from binary to
decimal.

16

o Decimal → FP
1. Convert decimal to

binary.
2. Convert binary to

normalized scientific
notation.

3. Encode sign as S (0/1).
4. Add the bias to

exponent and encode E
as unsigned.

5. The first bits after the
leading 1 that fit are
encoded into M.

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Question!
o What value is encoded by the following float?

• 0b 0 10000000 11000000000000000000000

💙 + 1.5
💜 + 2.75
🤎 + 0.75
🖤 + 3.5
🥶 Help!

17

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Question!
o What value is encoded by the following float?

• 0b 0 10000000 11000000000000000000000

💙 + 1.5
💜 + 2.75
🤎 + 0.75
🖤 + 3.5
🥶 Help!

18

Exp = E - Bias = 128 - 127 = 1

1.11 x 21 = 11.1 = 3.5

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Precision and Accuracy
o Precision is a count of the number of bits in a

computer word used to represent a value
• Capacity for accuracy

o Accuracy is a measure of the difference between
the actual value of a number and its computer
representation

• High precision permits high accuracy but doesn’t
guarantee it. It is possible to have high precision but
low accuracy.

19

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Precision and Accuracy
o Example: float pi = 3.14;

• pi will be represented using all 24 bits of the mantissa
(highly precise), but is only an approximation (not
accurate)

20

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Need Greater Precision?
o Double Precision (vs. Single Precision) in 64 bits

• C variable declared as double
• Exponent bias is now 210–1 = 1023
• Advantages: greater precision (larger mantissa),

greater range (larger exponent)
• Disadvantages: more bits used, slower to manipulate

21

S E (11) M (20 of 52)
63 62 52 51 32

M (32 of 52)
31 0

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Representing Very Small Numbers
o But wait… what happened to zero?

• Using standard encoding 0x00000000 =
• Special case: E and M all zeros = 0

• Two zeros! But at least 0x00000000 = 0 like integers

o New numbers closest to 0:
• a = 1.0…02×2-126 = 2-126

• b = 1.0…012×2-126 = 2-126 + 2-149

• Normalization and implicit 1 are to blame
• Special case: E = 0, M ≠ 0 are denormalized numbers

22

0
+∞-∞

Gaps!

a

b

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Denorm Numbers
o Denormalized numbers

• No leading 1
• Uses implicit exponent of –126 even though E = 0x00

o Denormalized numbers close the gap between
zero and the smallest normalized number
• Smallest norm: ± 1.0…0two×2-126 = ± 2-126

• Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest
denormalized number

23

So much
closer to 0

This is extra
(non-testable)

material

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Other Special Cases
o E = 0xFF, M = 0: ± ∞

• e.g. division by 0
• Still work in comparisons!

o E = 0xFF, M ≠ 0: Not a Number (NaN)
• e.g. square root of negative number, 0/0, ∞–∞
• NaN propagates through computations
• Value of M can be useful in debugging

o New largest value (besides ∞)?
• E = 0xFF has now been taken!
• E = 0xFE has largest: 1.1…12×2127 = 2128 – 2104

24

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point Encoding Summary

E M Meaning

0x00 0 ± 0

0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num

0xFF 0 ± ∞
0xFF non-zero NaN

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point Interpretation Flow
Chart

26

FP Bits
What is the
value of E?

What is the
value of M?

all 1’s

all 0’s

anything else

anything
else

all 0’s

= special case

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating point topics
o Fractional binary numbers
o IEEE floating-point standard
o Floating-point operations and rounding
o Floating-point in C

o There are many more details that we won’t cover
• It’s a 58-page standard…

27

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Tiny Floating Point Representation
● 8 bit floating point to talk about some key points

● Assume same properties of IEEE floats
○ Bias = 2w-1-1 = 7
○ Zero encoding = 1000 0000 or 0000 0000
○ +Inf = 0 1111 000
○ Largest Normalized number = 0 1110 111
○ Smallest Normalized number = 0 0001 000

28

S E M
1 4 3

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Distribution of Values
o What ranges are NOT representable?

• Between largest norm and infinity
• Between zero and smallest denorm
• Between norm numbers?

o Given a FP number, what’s the bit pattern of the
next largest representable number?
• What is this “step” when Exp = 0?
• What is this “step” when Exp = 100?

o Distribution of values is denser toward zero

29

Overflow (Exp too large)

Underflow (Exp too small)

Rounding

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point Rounding

30

This is extra
(non-testable)

material

S E M
1 4 3

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point Ops: Basic Idea

o x +f y = Round(x + y)
o x *f y = Round(x * y)

o Basic idea for floating point operations:
• First, compute the exact result
• Then round the result to make it fit into the specified

precision (width of M)
• Possibly over/underflow if exponent outside of range

31

Value = (-1)S×Mantissa×2Exponent

S ME

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Spooky things in FP
o Overflow yields ±∞ and underflow yields 0
o Can still use ±∞ and NaN in operations!

• Result usually ±∞ or NaN, but not intuitive
o FP Ops don’t work like real math! Rounding!

• Not associative!

• Not distributive!

• Not cumulative!
• Repeatedly adding a small number to a large one

might do nothing!

32

100 * (0.1 + 0.2) != 100 * 0.1 + 100 * 0.2
30.000000000000003553 30

(3.14+1e100)-1e100 != 3.14+(1e100-1e100)

0 3.14

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Aside: Limits of Interest
o

33

This is extra
(non-testable)

material

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point Encoding Flow Chart

34

= special case

Yes

No

Yes

Normed
E = Exp + bias
1.M = Man

No

Yes

Denormed
E = all 0’s
0.M = Man

 Yes

No

No

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

No one understands
everything about FP!
Not even researchers!

35

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Question!
● Using our 8-bit representation, what value get

stored when we try to encode 384 = 28 * 27

💙 + 256
💜 + 384
🤎 + Infinity
🖤 NaN

 🥶 Help!!

36

S E M
1 4 3

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Question!
o Using our 8-bit representation, what value gets

stored when we try to encode 2.625 = 21 + 2-1 +
2-3?

💙 + 2.5
💜 + 2.625
🤎 + 2.75
🖤 + 3.25

 🥶 Help!!

37

S E M
1 4 3

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point in C
o Two common levels of precision:

float 1.0f single precision (32-bit)
double 1.0 double precision (64-bit)

o #include <math.h> to get INFINITY and
NAN constants

o Equality (==) comparisons between floating
point numbers are tricky, and often return
unexpected results, so just avoid them!

38

!!!

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point Conversions in C
● Casting between int/float/double changes the

bit representation!
○ int → float; might round, won’t overflow
○ int → double; works fine, lots of space
○ long → double; might be fine, depends on long

size
○ double/float → int;

■ Undefined when NaN or Inf
■ Truncates fractional part -- rounds to zero

39

!!!

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point Summary
o Floats also suffer from the fixed number of bits

available to represent them
• Can get overflow/underflow
• “Gaps” produced in representable numbers means we can

lose precision, unlike ints
• Some “simple fractions” have no exact representation

(e.g. 0.2)
• “Every operation gets a slightly wrong result”

o Floating point arithmetic not associative or distributive
• Mathematically equivalent ways of writing an expression

may compute different results
o Never compare floating point values for equality!
o Careful when converting between ints and floats!

40

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Number Representation Matters!
Especially if you care about money!
o 1991: Patriot missile targeting error

• clock skew due to conversion from integer to floating point
o 1996: Ariane 5 rocket exploded ($1 billion)

• overflow converting 64-bit floating point to 16-bit integer
o 2000: Y2K problem

• limited (decimal) representation: overflow, wrap-around
o 2038: Unix epoch rollover

• Unix epoch = seconds since 12am, January 1, 1970
• signed 32-bit integer representation rolls over to TMin in 2038

o Other related bugs:
• 1982: Vancouver Stock Exchange 10% error in less than 2 years
• 1994: Intel Pentium FDIV (floating division) HW bug ($475 million)
• 1997: USS Yorktown “smart” warship stranded: divide by zero
• 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

41

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

That’s the end of U1!

42

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Unit 1, Technical Summary
● Binary, Hex, ASCII (L1)
● Representation of memory in hardware

○ Alignment, endianness (L2)
○ Variable assignment, arrays, pointers (L3)
○ Address manipulation with pointer arithmetic (L3)

● Data & Operations
○ Boolean logic; Logical & bitwise ops (L4)
○ Signed vs. unsigned integers, and their limits (L5)

■ Two’s complement, motivated by sign-magnitude
○ Floating point representations and limits (L6)

■ IEEE standard, motivated by fixed point

43

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Unit 1, Socio-technical summary
● Standards encoding priorities of creators
● Values in first modern computers

○ What is “robot” work? Who’s done it?
● Values in C (C == Camping; explore the frontier)
● Insulation
● Values in the original first computers
● Shame (this lecture)

44

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Why’d we learn this?

45

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Discussion Norms
o Everyone’s experience is valid!
o Feelings are valid too!
o Everyone should have space to share!

• Though, no one’s required to share. A “yes” or “no”
without explanation is more than enough.

• Saying “I don’t feel like sharing” is good too!
o I’ve got a whole heap of hurt here!

• Some of y’all might as well
• Try to be compassionate to everyone!

o A brief grounding…

46

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Breakouts: Shame!
Come up with a
working definition!
We’ll share out in chat!

47

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

“I want to make sure
that we emphasize,
don’t compare floats
for equality”

Why?

48

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

The “Embarrassed” list
● Problem: What to teach CS undergrads?

○ We have some ideas, but it’s good to revisit
● The Embarrassed List

○ Go around to faculty, ask “What would you be
embarrassed if students graduated not knowing?”

○ Create a list from these responses
○ Realize that the list is way too long to teach

everything
○ Start compromising!

● This is more about compromise than shame
○ Let’s dig deeper into assumptions!

49

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

A Caveat:
● My opinions, my view of the space that we’re in
● Not vilifying anyone, curricular development is

really challenging, and this is pretty good
● More based on my experiences:

○ undergrad
○ internships
○ other CS spaces
○ Grad school in computer architecture (CEd’s lovely)

● My experience of CS culture!
○ Maybe relevant to some of you!

50

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Embarrassed list; what’s going on?
● Problem: What to teach CS undergrads?

○ Value: Students should represent this institution well!
● We don’t want anyone to embarrass us!

51

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Embarrassed list; what’s going on?
● Problem: What to teach CS undergrads?

○ Value: Students should represent this institution well!
● We don’t want anyone to embarrass us!

○ We don’t want to be ashamed of our students
● Let’s make sure they know….

○ Vim, it might come up in an interview
■ (in an interview, for a 21sp TA)

○ How to interact with a terminal
○ Not to compare floats for equality
○ …
○ …

52

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Embarrassed list; what’s going on?
● Problem: What to teach CS undergrads?

○ Value: Students should represent this institution well!
● We don’t want anyone to embarrass us!

○ We don’t want to be ashamed of our students
● Let’s make sure they know….

○ Vim, it might come up in an interview
■ (in an interview, for a 21sp TA)

○ How to interact with a terminal
○ Not to compare floats for equality
○ …
○ …
○ “how to be a computer scientist”

53

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Shame & Legitimacy
● “We need to make sure that our graduates are

seen as legitimate computer scientists by
employers”
○ “Walk the walk, talk the talk, be seen doing it”
○ Illegitimate students might embarrass us!

■ Not really, but it might change the reputation of the
Allen School

54

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Shame & Legitimacy
● “We need to make sure that our graduates are

seen as legitimate computer scientists by
employers”
○ “Walk the walk, talk the talk, be seen doing it”
○ Illegitimate students might embarrass us!

■ Not really, but it might change the reputation of the
Allen School

● There’s so much tied up with legitimacy in CS…
● It’s like a man card

55

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

“man card”
n. Requirement to be “accepted” as a “respectable” member of the “male”
community. Can be revoked by other “respectable males” for doing
“not-respectable male” things. (scare quotes mine)

56

Front Back

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

What would be
required of a
“Computer Scientist”
card?

57

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Don’t compare floats
for equality!

58

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Allen School & Shame (EE, Microsoft)
● I haven’t felt policed in the same way here!

○ It’s been really lovely, honestly
● Other spaces might be less kind
● You’re here, regardless of whether you believe…

○ That you need to learn Vim
○ That you need to understand FP special cases
○ That you need to understand how a computer works

● Hopefully, wherever you end up, you can find
people that don’t weaponize their insecurity and
shame for you not knowing something

59

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

What I remember about FP
● Don’t compare floats for equality!

...
o Something about a mantissa?
o And there’s an exponent that does something?
o Let me check my notes…
o ...oh yeah, there’s this formula!
o And these special cases to note!
o Got it, got it.

60

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

I’m not saying that this isn’t
important…

...but loving yourself wholeheartedly
is probably much more important

61

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

If someone shames you for not
knowing something, and they try to
take away your “CS card”…

… Ask them, “Who hurt you?”
You’ll maintain the moral high ground!

62

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation
scheme. More information for the curious and
interested!

63

BONUS SLIDES

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Tiny Floating Point Example

o 8-bit Floating Point Representation
• The sign bit is in the most significant bit (MSB)
• The next four bits are the exponent, with a bias of

24-1–1 = 7
• The last three bits are the mantissa

o Same general form as IEEE Format
• Normalized binary scientific point notation
• Similar special cases for 0, denorm numbers, NaN, ∞

64

S E M
1 4 3

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Dynamic Range (Positive Only)

65

S E M Exp Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1 = 1
0 0111 001 0 9/8*1 = 9/8
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

L02: Memory & Data IL06: Floating Point CSE351, Summer 2021

Special Properties of Encoding
o Floating point zero (0+) exactly the same bits as integer

zero
• All bits = 0

o Can (Almost) Use Unsigned Integer Comparison
• Must first compare sign bits
• Must consider 0- = 0+ = 0
• NaNs problematic

• Will be greater than any other values
• What should comparison yield?

• Otherwise OK
• Denorm vs. normalized
• Normalized vs. infinity

66

