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Gentle and Loving Reminders!
o Everything’s due at 8pm, unless we’ve talked!
o hw4, hw5 due tonight
o Lab 1a due tonight!!! 

• Submit pointer.c and lab1Areflect.txt
o Lab 1b due in a week (7/9), with hw6, hw7

• Submit aisle_manager.c, store_client.c and 
lab1Breflect.txt

o US1 due the monday after (7/12)
• We’re here to help! Help each other!

o There’s a holiday! Find some joy, not working!
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1st Floorplan Critique on Wednesday!
● Last lecture of Unit #1!
● Wednesday, July 7, we’ll have some in-class 

time to give each other feedback on unit 
summaries
○ Come with something to get feedback on!
○ It doesn’t need to be polished, early designs are ok!
○ Most designers apologize for sketches, which is silly
○ A few prototypes, a design you’re excited about, 

“what you have so far”, all ok!
● Unit summaries will be due Monday, July 12
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How are you feeling today?
How do you feel about 
learning?
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Learning Objectives
● At the end of this lecture, you should be able to...

○ Convert between floating point and decimal encoding
○ Give examples of special cases in floating point, 

along with their binary representations
○ Explain why we shouldn’t compare floats for equality
○ Understand the limitations of floating point 

representations
○ Give a few examples of knowledge-shame 

manifesting in computing
○ Reflect on this unit to make a floorplan!

■ Though, this one you could do earlier...
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Fixed Point Representation
o Implied binary point.  Two example schemes:

#1: the binary point is between bits 2 and 3
b7 b6 b5 b4 b3  [.] b2 b1 b0

#2: the binary point is between bits 4 and 5
b7 b6 b5 [.] b4 b3 b2 b1 b0

o Fixed point placement is a tradeoff between range 
and precision -- both are fixed!
• range: difference between largest and smallest numbers possible
• precision: smallest possible difference between any two numbers

o Hard to pick how much you need of each!
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Floating Point Representation 
o Analogous to scientific notation

• In Decimal:
• Not 12000000, but 1.2 x 107 In C: 1.2e7
• Not 0.0000012, but  1.2 x 10-6       In C: 1.2e-6

• In Binary:
• Not 11000.000, but 1.1 x 24

• Not 0.000101, but 1.01 x 2-4

o We have to divvy up bits (32) between: 
• the sign (1 bit)
• the mantissa (significand)
• the exponent
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Scientific Notation (Decimal)

o Normalized form:  exactly one digit (non-zero) to 
left of decimal point

o Alternatives to representing 1/1,000,000,000
• Normalized: 1.0×10-9

• Not normalized: 0.1×10-8,10.0×10-10 

8

6.02
10

 × 1023

radix (base)decimal point

exponentmantissa



L02:  Memory & Data IL06: Floating Point CSE351, Summer 2021

Scientific Notation (Binary)

o floating point from the “floating” of the binary point
• Declare such variable in C as float (or double)
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Scientific Notation Translation
o Convert from scientific notation to binary point

• Multiply by shifting the decimal until the exponent 
disappears

• Ex: 1.0112 x 24 = 101102 = 2210
• Ex: 1.0112 x 2-2 = 0.010112 = 0.3437510
•

o Convert from binary point to normalized scientific
• Distribute exponents until binary point is to the right of 

a single digit
• Ex: 1101.0012 = 1.1010012 x 23
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Floating Point Topics
o Fractional binary numbers
o IEEE floating-point standard
o Floating-point operations and rounding
o Floating-point in C

o There are many more details that we won’t cover
• It’s a 58-page standard…
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IEEE Floating Point
o IEEE 754 

• 1985, uniform standard for floating point arithmetic
• Main idea: make numerically sensitive programs portable
• Specifies two things: representation and results of operations
• Now supported by all major CPUs!

o Driven by numerical concerns
• Scientists/numerical analysts want them to be as real as possible
• Engineers want them to be easy to implement and fast

• Scientists mostly won out
• Nice standards for rounding, overflow, underflow, but...
• Hard to make fast in hardware
• Float ops can be an order of magnitude slower than integer ops!
• Also, much more energy intensive, see BTC
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Floating Point Encoding
o Use normalized, base 2 scientific notation:

• Value: ±1 × Mantissa × 2Exponent

• Bit Fields: (-1)S × 1.M × 2(E–bias)

o Representation Scheme:
• Sign bit (0 is positive, 1 is negative)
• Mantissa (a.k.a. significand) is the fractional part of the 

number in normalized form and encoded in bit vector M
• Exponent weights the value by a (possibly negative) 

power of 2 and encoded in the bit vector E
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Bias Field: Allow negative exponents
● Bias = 2w-1-1
● E = Exponent + bias (or Exponent = E - Bias)
● IEEE float have w=8, bias=127

● Exponent = 1,     E = 1 + 127 = 128
● Exponent = 127; E = 127 + 127 = 254
● Exponent = -63;  E = -63 + 127 = 64

● E results from signed arithmetic, represent as 
unsigned
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The Mantissa (Fraction) Field

o Note the implicit 1 in front of the M bit vector
• Ex:  0b 0011 1111 1100 0000 0000 0000 0000 0000 

is read as  1.12 = 1.510, not  0.12 = 0.510 
• Gives us an extra bit of precision

o Mantissa “limits”
• Low values near M = 0b0…0 are close to 2Exp

• High values near   M = 0b1…1 are close to 2Exp+1
15
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Normalized FP Conversions
o FP → Decimal
1. Append the bits of M to 

implicit leading 1 to 
form the mantissa.

2. Multiply the mantissa 
by 2E – bias.

3. Multiply the sign (-1)S.
4. Multiply out the 

exponent by shifting 
the binary point.

5. Convert from binary to 
decimal.
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o Decimal → FP
1. Convert decimal to 

binary.
2. Convert binary to 

normalized scientific 
notation.

3. Encode sign as S (0/1).
4. Add the bias to 

exponent and encode E 
as unsigned.

5. The first bits after the 
leading 1 that fit are 
encoded into M.
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Question!
o What value is encoded by the following float?

• 0b  0  10000000  11000000000000000000000

💙     + 1.5
💜 + 2.75
🤎   + 0.75
🖤    + 3.5
🥶  Help!
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Question!
o What value is encoded by the following float?

• 0b  0  10000000  11000000000000000000000

💙     + 1.5
💜 + 2.75
🤎   + 0.75
🖤    + 3.5
🥶  Help!
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Exp = E - Bias = 128 - 127 = 1

1.11 x 21 = 11.1 = 3.5
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Precision and Accuracy
o Precision is a count of the number of bits in a 

computer word used to represent a value
• Capacity for accuracy

o Accuracy is a measure of the difference between 
the actual value of a number and its computer 
representation

• High precision permits high accuracy but doesn’t 
guarantee it.  It is possible to have high precision but 
low accuracy.
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Precision and Accuracy
o Example:  float pi = 3.14;

• pi will be represented using all 24 bits of the mantissa 
(highly precise), but is only an approximation (not 
accurate)
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Need Greater Precision?
o Double Precision (vs. Single Precision) in 64 bits

• C variable declared as double
• Exponent bias is now 210–1 = 1023
• Advantages: greater precision (larger mantissa), 

greater range (larger exponent)
• Disadvantages: more bits used, slower to manipulate
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Representing Very Small Numbers
o But wait… what happened to zero?

• Using standard encoding 0x00000000 = 
• Special case:  E and M all zeros = 0

• Two zeros!  But at least 0x00000000 = 0 like integers

o New numbers closest to 0:
• a = 1.0…02×2-126 = 2-126

• b = 1.0…012×2-126 = 2-126 + 2-149

• Normalization and implicit 1 are to blame
• Special case: E = 0, M ≠ 0 are denormalized numbers

22
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Denorm Numbers
o Denormalized numbers

• No leading 1
• Uses implicit exponent of –126 even though E = 0x00

o Denormalized numbers close the gap between 
zero and the smallest normalized number
• Smallest norm: ± 1.0…0two×2-126 = ± 2-126

• Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest 
denormalized number

23

So much
closer to 0

This is extra 
(non-testable) 

material
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Other Special Cases
o E = 0xFF, M = 0:  ± ∞

• e.g. division by 0
• Still work in comparisons!

o E = 0xFF, M ≠ 0:  Not a Number (NaN)
• e.g. square root of negative number, 0/0, ∞–∞
• NaN propagates through computations
• Value of M can be useful in debugging

o New largest value (besides ∞)?
• E = 0xFF has now been taken!
• E = 0xFE has largest:  1.1…12×2127 = 2128 – 2104 
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Floating Point Encoding Summary

E M Meaning

0x00 0 ± 0

0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num

0xFF 0 ± ∞
0xFF non-zero NaN
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Floating Point Interpretation Flow 
Chart
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FP Bits
What is the 
value of E?

What is the 
value of M?

 

 

 

 

all 1’s

all 0’s

anything else

anything 
else

all 0’s

= special case
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Floating point topics
o Fractional binary numbers
o IEEE floating-point standard
o Floating-point operations and rounding
o Floating-point in C

o There are many more details that we won’t cover
• It’s a 58-page standard…
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Tiny Floating Point Representation
● 8 bit floating point to talk about some key points

● Assume same properties of IEEE floats
○ Bias = 2w-1-1 = 7
○ Zero encoding = 1000 0000 or 0000 0000
○ +Inf = 0 1111 000
○ Largest Normalized number = 0 1110 111
○ Smallest Normalized number = 0 0001 000

28
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Distribution of Values
o What ranges are NOT representable?

• Between largest norm and infinity
• Between zero and smallest denorm
• Between norm numbers?

o Given a FP number, what’s the bit pattern of the 
next largest representable number?
• What is this “step” when Exp = 0?
• What is this “step” when Exp = 100?

o Distribution of values is denser toward zero

29

Overflow (Exp too large)

Underflow (Exp too small)

Rounding



L02:  Memory & Data IL06: Floating Point CSE351, Summer 2021

Floating Point Rounding

30

This is extra 
(non-testable) 

material

S E M
1 4 3
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Floating Point Ops:  Basic Idea

o x +f y = Round(x + y)
o x *f y = Round(x * y)

o Basic idea for floating point operations:
• First, compute the exact result
• Then round the result to make it fit into the specified 

precision (width of M)
• Possibly over/underflow if exponent outside of range

31

Value = (-1)S×Mantissa×2Exponent
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Spooky things in FP
o Overflow yields ±∞ and underflow yields 0
o Can still use ±∞ and NaN in operations!

• Result usually ±∞ or NaN, but not intuitive
o FP Ops don’t work like real math! Rounding!

• Not associative!

• Not distributive!

• Not cumulative!
• Repeatedly adding a small number to a large one 

might do nothing!
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100 * (0.1 + 0.2) != 100 * 0.1 + 100 * 0.2
30.000000000000003553 30

(3.14+1e100)-1e100 != 3.14+(1e100-1e100)

0 3.14
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Aside: Limits of Interest
o  

33

This is extra 
(non-testable) 

material
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Floating Point Encoding Flow Chart
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= special case

   

  

Yes

 

  

No

Yes

Normed
E = Exp + bias
1.M = Man

No

Yes

Denormed
E = all 0’s
0.M = Man

  Yes

No

No
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No one understands 
everything about FP!
Not even researchers!
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Question!
● Using our 8-bit representation, what value get 

stored when we try to encode 384 = 28 * 27

💙  + 256
💜  + 384
🤎  + Infinity
🖤  NaN

   🥶   Help!!

36
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Question!
o Using our 8-bit representation, what value gets 

stored when we try to encode 2.625 = 21 + 2-1 + 
2-3?

💙  + 2.5
💜 + 2.625
🤎 + 2.75
🖤  + 3.25

   🥶   Help!!

37
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Floating Point in C
o Two common levels of precision:

float 1.0f   single precision (32-bit)
double 1.0    double precision (64-bit)

o #include <math.h> to get INFINITY and 
NAN constants

o Equality (==) comparisons between floating 
point numbers are tricky, and often return 
unexpected results, so just avoid them!

38
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Floating Point Conversions in C
● Casting between int/float/double changes the 

bit representation!
○ int → float; might round, won’t overflow
○ int → double; works fine, lots of space
○ long → double; might be fine, depends on long 

size
○ double/float → int; 

■ Undefined when NaN or Inf
■ Truncates fractional part -- rounds to zero

39
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Floating Point Summary
o Floats also suffer from the fixed number of bits 

available to represent them 
• Can get overflow/underflow
• “Gaps” produced in representable numbers means we can 

lose precision, unlike ints
• Some “simple fractions” have no exact representation 

(e.g. 0.2)
• “Every operation gets a slightly wrong result”

o Floating point arithmetic not associative or distributive
• Mathematically equivalent ways of writing an expression 

may compute different results
o Never compare floating point values for equality!
o Careful when converting between ints and floats!
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Number Representation Matters!
Especially if you care about money!
o 1991: Patriot missile targeting error

• clock skew due to conversion from integer to floating point
o 1996: Ariane 5 rocket exploded  ($1 billion)

• overflow converting 64-bit floating point to 16-bit integer
o 2000: Y2K problem

• limited (decimal) representation: overflow, wrap-around
o 2038: Unix epoch rollover

• Unix epoch = seconds since 12am, January 1, 1970
• signed 32-bit integer representation rolls over to TMin in 2038

o Other related bugs:
• 1982: Vancouver Stock Exchange 10% error in less than 2 years
• 1994: Intel Pentium FDIV (floating division) HW bug ($475 million)
• 1997: USS Yorktown “smart” warship stranded: divide by zero
• 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
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That’s the end of U1!
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Unit 1, Technical Summary
● Binary, Hex, ASCII (L1)
● Representation of memory in hardware

○ Alignment, endianness (L2)
○ Variable assignment, arrays, pointers (L3)
○ Address manipulation with pointer arithmetic (L3)

● Data & Operations
○ Boolean logic; Logical & bitwise ops (L4)
○ Signed vs. unsigned integers, and their limits (L5)

■ Two’s complement, motivated by sign-magnitude
○ Floating point representations and limits (L6)

■ IEEE standard, motivated by fixed point
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Unit 1, Socio-technical summary
● Standards encoding priorities of creators
● Values in first modern computers

○ What is “robot” work? Who’s done it?
● Values in C (C == Camping; explore the frontier)
● Insulation
● Values in the original first computers
● Shame (this lecture)
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Why’d we learn this?
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Discussion Norms
o Everyone’s experience is valid!
o Feelings are valid too!
o Everyone should have space to share!

• Though, no one’s required to share. A “yes” or “no” 
without explanation is more than enough.

• Saying “I don’t feel like sharing” is good too!
o I’ve got a whole heap of hurt here!

• Some of y’all might as well
• Try to be compassionate to everyone!

o A brief grounding…
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Breakouts: Shame!
Come up with a 
working definition!
We’ll share out in chat!
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“I want to make sure 
that we emphasize, 
don’t compare floats 
for equality”

Why?
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The “Embarrassed” list
● Problem: What to teach CS undergrads?

○ We have some ideas, but it’s good to revisit
● The Embarrassed List

○ Go around to faculty, ask “What would you be 
embarrassed if students graduated not knowing?”

○ Create a list from these responses
○ Realize that the list is way too long to teach 

everything
○ Start compromising!

● This is more about compromise than shame
○ Let’s dig deeper into assumptions!
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A Caveat:
● My opinions, my view of the space that we’re in
● Not vilifying anyone, curricular development is 

really challenging, and this is pretty good
● More based on my experiences:

○ undergrad
○ internships
○ other CS spaces
○ Grad school in computer architecture (CEd’s lovely)

● My experience of CS culture!
○ Maybe relevant to some of you!
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Embarrassed list; what’s going on?
● Problem: What to teach CS undergrads?

○ Value: Students should represent this institution well!
● We don’t want anyone to embarrass us!

51
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Embarrassed list; what’s going on?
● Problem: What to teach CS undergrads?

○ Value: Students should represent this institution well!
● We don’t want anyone to embarrass us!

○ We don’t want to be ashamed of our students
● Let’s make sure they know….

○ Vim, it might come up in an interview
■ (in an interview, for a 21sp TA)

○ How to interact with a terminal
○ Not to compare floats for equality
○ …
○ …

52
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Embarrassed list; what’s going on?
● Problem: What to teach CS undergrads?

○ Value: Students should represent this institution well!
● We don’t want anyone to embarrass us!

○ We don’t want to be ashamed of our students
● Let’s make sure they know….

○ Vim, it might come up in an interview
■ (in an interview, for a 21sp TA)

○ How to interact with a terminal
○ Not to compare floats for equality
○ …
○ …
○ “how to be a computer scientist”
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Shame & Legitimacy
● “We need to make sure that our graduates are 

seen as legitimate computer scientists by 
employers”
○ “Walk the walk, talk the talk, be seen doing it”
○ Illegitimate students might embarrass us!

■ Not really, but it might change the reputation of the 
Allen School

54
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Shame & Legitimacy
● “We need to make sure that our graduates are 

seen as legitimate computer scientists by 
employers”
○ “Walk the walk, talk the talk, be seen doing it”
○ Illegitimate students might embarrass us!

■ Not really, but it might change the reputation of the 
Allen School

● There’s so much tied up with legitimacy in CS…
● It’s like a man card

55
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“man card”
n. Requirement to be “accepted” as a “respectable” member of the “male” 
community. Can be revoked by other “respectable males” for doing 
“not-respectable male” things. (scare quotes mine)

56
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What would be 
required of a 
“Computer Scientist” 
card?
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Don’t compare floats 
for equality!
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Allen School & Shame (EE, Microsoft)
● I haven’t felt policed in the same way here!

○ It’s been really lovely, honestly
● Other spaces might be less kind
● You’re here, regardless of whether you believe…

○ That you need to learn Vim
○ That you need to understand FP special cases
○ That you need to understand how a computer works

● Hopefully, wherever you end up, you can find 
people that don’t weaponize their insecurity and 
shame for you not knowing something
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What I remember about FP
● Don’t compare floats for equality!

...
o Something about a mantissa?
o And there’s an exponent that does something?
o Let me check my notes…
o ...oh yeah, there’s this formula!
o And these special cases to note!
o Got it, got it.
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I’m not saying that this isn’t 
important…

...but loving yourself wholeheartedly 
is probably much more important
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If someone shames you for not 
knowing something, and they try to 
take away your “CS card”… 

… Ask them, “Who hurt you?”
You’ll maintain the moral high ground!
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An example that applies the IEEE Floating Point 
concepts to a smaller (8-bit) representation 
scheme.  More information for the curious and 
interested!

63

BONUS SLIDES
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Tiny Floating Point Example

o 8-bit Floating Point Representation
• The sign bit is in the most significant bit (MSB)
• The next four bits are the exponent, with a bias of 

24-1–1 = 7
• The last three bits are the mantissa

o Same general form as IEEE Format
• Normalized binary scientific point notation
• Similar special cases for 0, denorm numbers, NaN, ∞

64
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Dynamic Range (Positive Only)

65

S E    M Exp Value

0 0000 000 -6 0
0 0000 001 -6 1/8*1/64 = 1/512
0 0000 010 -6 2/8*1/64 = 2/512
…
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512
0 0001 000 -6 8/8*1/64 = 8/512
0 0001 001  -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16
0 0111 000 0 8/8*1    = 1
0 0111 001 0 9/8*1    = 9/8
0 0111 010 0 10/8*1   = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240
0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers
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Special Properties of Encoding
o Floating point zero (0+) exactly the same bits as integer 

zero
• All bits = 0

o Can (Almost) Use Unsigned Integer Comparison
• Must first compare sign bits
• Must consider 0- = 0+ = 0
• NaNs problematic

• Will be greater than any other values
• What should comparison yield?

•  Otherwise OK
• Denorm vs. normalized
• Normalized vs. infinity
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