YA/ UNIVERSITY of WASHINGTON

L02: Memory and Data |

CSE351, Summer 2021

Integers |

CSE 351 Summer 2021

Instructor:
Mara Kirdani-Ryan

Teaching Assistants:
Kashish Aggarwal
Nick Durand

Colton Jobes

Tim Mandzyuk

ALAIH,  DONEHL,
DONEMLINL,  ALA'IH,

ALAH, DONEHLIN,
DONEHLINI DONEHLINI,
AlATH, ALAIH,

DONEHLINI, - ALAIH,

DONEHLlN! DONEHL\NI,
DONEHLlNl

FOR ADDED SECURITY, AFTER
WE ENCRYPT THE DATA STREAM,
WE SEND IT THROUGH OUR
NAVAJO COPE TALKER.

... 1S HE JUST USING
NAVATO WORDS FOR
"ZER0 AND "ONE"?

WHOA, HEY, KEEP
YOUR \/OICE DOWN!

M\,

http://xkcd.com/257/



http://xkcd.com/257/
http://www.youtube.com/watch?v=GC_mV1IpjWA

w UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Gentle and Loving Reminders!

- No lecture on Monday 7/5 (campus holiday)
- hw3 due Wednesday 6/30 — 8pm
- Hw4, hw), lab1a due Friday 7/2 — 8pm

* | wanted y’all to have a holiday without deadlines!

* 1 late day on lab1a would take you to Monday, 8pm
- For the rest of the course:

* Pre-lecture readings are due at 10am
o Other reminders? Does this feel ok?

* You all belong in computing!



CSE351, Summer 2021

YA UNIVERSITY of WASHINGTON L02: Memory and Data |

A note on the first survey

. | didn’t change everything from last quarter..
O B0000000000000000000

. If there’s anything that you’d like us to know,
difficulties with remote instruction, personal stuff
that's coming up, please, please let us know!
O marakr@cs.washington.edu, if you'd prefer privacy

« This pandemic’s been a lot!
o Last August, | wasn't sure if | could keep living
o Everyone | know’s been through it.
o0 Let us know how we can help!


mailto:marakr@cs.washington.edu

Classroom norms on
language?

Reach out with concerns!



UNIVERSITY of WASHINGTON Lo2: Memory and Datal ~ CSE351, Summer 2021

How are y’all feeling
today?



Seattle’s hot!

Submit lab1a by Monday@8pm, only
using one late day!



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Memory, Data, and Addressing

- Representing information as bits and bytes
* Binary, hexadecimal, fixed-widths

- Organizing and addressing data in memory
* Memory is a byte-addressable array
* Machine “word” size = address size = register size
* Endianness — ordering bytes in memory
- Manipulating data in memory using C
* Assignment
* Pointers, pointer arithmetic, and arrays

- Boolean algebra and bit-level manipulations



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Design Tradeoffs

- When problems don’t have a clear answer, you

have tradeoffs!
- Playing card representations

- Integers (later floats)
- Tradeoffs encode priorities!
* As well as ideology

- Lots of ideology in 351, emoji to signal ideology?

- When you see ideology (especially when it's
unexamined), react with e

N\




Breakouts!

Does computing feel like a
safe space?

Does it feel oppressive?
...but first...



w UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Discussion Norms

- Everyone’s experience is valid!
- Feelings are valid too!

- Everyone should have space to share!

* Though, no one’s required to share. A “yes” or “no”
without explanation is more than enough.

* Saying “l don'’t feel like sharing” is good too!
- I've got a whole heap of hurt here!

* Some of y’all might as well

* Try to be compassionate to everyone!

- Abrief grounding...

10



YA/ UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Breakouts!

e What are your experiences bringing
other interests into computing?

e Does computing feel like a safe
space?

e Have you felt encouraged to pursue
non-CS interests?



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Learning Objectives

- Understanding this material means you can...

O

Use bitwise and logical operations to perform bit-level
manipulations, &, |, #, ~, >>, and << (lab1a)

Convert between decimal and binary representations
for signed and unsigned integers

Explain tradeoffs between sign-magnitude and two’s
complement encodings

Begin to recognize CS ideology, especially when
considering tradeoffs between different designs
Develop a sense of how knowledge insulation affect
CS, and more importantly, how knowledge insulation
affects you!

12



YA/ UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Boolean Algebra

» Developed by George Boole in 19th Century

O

O O O O O

Algebraic representation of logic (T -=> 1, F -> 0)
AND: 2g&B=1 when bothAis1and B is 1

OR: A |B=1 wheneitherAis1orBis 1

XOR: A"B=1 when either Ais 1 or Bis 1; not both
NOT: ~A=1 when Ais 0 and vice versa
DeMorgan'slaw: ~(A | B) = ~A & ~B

AND OR XOR NOT
o|oo o|01 o|01 o|1
1o 1 111 11 o0 1| o

13



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

General Boolean Algebras

+» Operate on bit vectors
" QOperations applied bitwise
= All of the properties of Boolean algebra apply

01101001 01101001 01101001
& 01010101 ] 01010101 ~ 01010101 ~ 01010101
01000001 01111101 00111101 10101010
+» Examples of useful operations:
01010101
x*x =0 ~ 101010101
00000000

01010101
111110000
11110101

14



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Bit-Level Operations in C
- & (AND), | (OR), ~(XOR), ~ (NOT)

* View arguments as bit vectors, apply operations bitwise
* Apply to any “integral” data type
- long, int, short, char, unsigned

- Examples with char a, b, c;

* a = (char) 0x41; // 0x41->0b 0100 0001

b = ~a; // Ob 1011 1110 ->0xBE
* a = (char) 0x069; // 0x69->0b 0110 1001

b (char) 0x55; // 0x55->0b 0101 0101

c = a & b; // Ob 0100 0001 ->0x41
* a = (char) 0x41; // 0x41->0b 0100 0001

b = a; // Ob 0100 0001

C a ~ b; // Ob 0000 0000 ->0x0

15



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Contrast: Logic Operations
- Logical opsin C: && (AND), || (OR), ! (NOT)

* 0 is False, anything nonzero is True

* Always return O or 1

* Early termination (short-circuit evaluation) of &, | |

- Examples (char data type)
e 10x41 -> 0x00
e 10x00 -> 0x01
e 1'10x41 -> O0x01
‘P && *p
- If p is the null pointer (0x0), then p is never
dereferenced!

= OxCC && 0x33 —-> 0x01
= Ox00 || 0x33 -> 0x01

16



CSE351, Summer 2021

W UNIVERSITY of WASHINGTON L02: Memory and Data |

First Floor: Data

©)

How do we represent
data (strings, numbers)
computationally?

CSE154 (Web)

/\ Java and C
A

—_— Higher than we'll go

What limits exist? Why? e S
What values were

Scale, Coherence I

Memory, Caches
Processes
Virtual Memory
Memory Allocation

encoded into data Programs | (2
. [ : Executables
representations? é} S Avays, Stucs
. g ] O (- Memory, Data
What was prioritized? | CS&W | iogers, Flosi
Why? OO it owoarvneno

Today: Integers!

17




YA/ UNIVERSITY of WASHINGTON

L02: Memory and Data |

CSE351, Summer 2021

But before we get to integers....

- Encode a standard deck of playing cards

- 52 cards in 4 suits

* How do we encode suits, face cards?

- What operations do we want to make easy to implement?
* Which is the higher value card?

* Are they the same suit?

s 2a B [fes 3% S 1&*& 2-1.&4- i% & [Qod
& & I R B ool I
LR I R R R R KR KR i a2
5 2o [3o0 [j6oaiea(eaa Zooo 2400 i & 200
& a o |sa]|oaa]an o o g
U ol ol oel vl vl vel ool ool o
A 29 (39 [ivw|ivw|ivew Zv'v §v.v vw Ev,v
¥ » v |vv|ve vy :v: ::
Soatl ot aadlaallaaldlaatlaalaal a®a
A 20 30 [tee ]300 (000 Z0‘¢ §0.¢ 10 0 [Deye
o o N KRN XN KX s |52
oo sl e e el o el e el o el ey o ol ot




W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Two possible representations

1. 1 bit/card (52): bit that refers to card set to 1

(SN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
low-order 52 bits of 64-bit word
* “One-hot” encoding (similar to set notation)

* Drawbacks:
- Hard to compare values and suits

o Larqe number of bits required
(AN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

4 suits 13 numbers

2. 1 bit/suit (4), 1 bit/number (13): 2 bits set

* Pair of one-hot encoded values
* Easier to compare suits/values; but lots of bits used

19



L02: Memory and Data | CSE351, Summer 2021

YA/ UNIVERSITY of WASHINGTON

Two better representations

3) Binary encoding of all 52 cards — 6 bits needed
¢ 26 =64>52 _
o low-order 6 bits of a byte
* Fits in one byte (smaller than one-hot encodings)
* How can we make value and suit comparisons easier?

4) Separate encodings of suit (2 bits), value (4 bits)

Suit value

* Also fits in one byte; easy to do comparisons

01

K

Q

J

3

2

A

1101

1100

1011

0011

0010

0001

10

¢
\ 4
L

11




W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Design Tradeoffs

- We went from 52 bits to 6 bits

* Are 6 bit representations “better” than 52 bit ones?
* It depends!!! What are we prioritizing?

- In general, folks prioritize along their ideology
* CS: Efficiency, minimalism

* Frequently choice between space/speed, without
considering socio-technical factors

- There usually isn’'t a "perfect” decision!

| I?I |

| [N ]
A\

(G.:_ 21




W UNIVERSITY of WASHINGTON L02: Memory and Data |

Compare Card Suits

char hand[5]; // represents a 5-card hand

char cardl, card2; // two cards to compare
cardl = hand[O0];

card?2 = hand[1l];

if ( sameSuitP(cardl, card2) ) { ... }

#define SUIT MASK 0x30

int sameSuitP (char cardl, char card2?2) {
return (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)))
//return (cardl & SUIT MASK) == (card2 & SUIT MASK);

SUIT MASK=0x30=|{0]0j1]1]0{0|0]0

suit value

22

CSE351, Summer 2021




W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

mask: a bit vector designed to achieve a desired

» behavior when used with a bitwise operator on
Com pa re Card S U another bit vector v.

Here we turn all but the bits of interest in v to 0.

char hand[5]; // reprfsents a 5-card hand
char cardl, card2; // twgf cards to compare
cardl = hand[0];

card?2 = hand[1l];

if ( sameSuitP (cardl,

) { ...}

#define SUIT MASK 0x30 // 0011 0000

int sameSuitP (char cardl, char card2?2) {

eturn (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)));
return (cardl & SUIT MASK) == ard2 & SUIT MASK) ;

}

returns intJ SUIT_MASK =0x30= [0|0]1[1]0

23



YA/ UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

mask: a bit vector designed to achieve a desired
» behavior when used with a bitwise operator on

COm pa re Card SU' another bit vector v.

Here we turn all but the bits of interest in v to 0.

#define SUIT MASK 0x30

int sameSuitP (char cardl, char card2?2) {
return (! ((cardl & SUIT MASK) ~ (card2 & SUIT MASK)));
//return (cardl & SUIT MASK) == (card2 & SUIT MASK);

SUTT MASK

[ ! (x"y) equivalent to x==vy

24



YA UNIVERSITY of WASHINGTON L02: Memory and Data |

CSE351, Summer 2021

mask: a bit vector designed to achieve a
desired behavior when used with a
Com pa re Card Val UES bitwise operator on another bit vector v.

char hand[5]; // represents a 5-card hand
char cardl, card2; // two cards to compare
cardl = hand[0];

card?2 = hand[1l];

if ( greaterValue(cardl, card2) ) { ... }

#define VALUE MASK O0xOF // 0000 1111

int greaterValue (char cardl, char card2) {
return ((unsigned 1int) (cardl & VALUE MASK) >
(unsigned int) (card2 & VALUE MASK)) ;

VALUE MASK=0x0F=|0|0|0f0]1|1]1|1

- value
sult 25



YA/ UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

mask: a bit vector designed to achieve a
desired behavior when used with a

COm pa l'e Card Val UES bitwise operator on another bit vector v.

#define VALUE MASK OxOF

int greaterValue (char cardl, char card2) {
return ((unsigned 1int) (cardl & VALUE MASK) >
(unsigned 1int) (card2 & VALUE MASK));

21O > 1310

0O (false)

26



W UNIVERSITY of WASHINGTON L02: Memory and Datal | CSE351, Summer 2021

Integers

o Binary representation of integers

* Unsigned and signed
- Shifting and arithmetic operations — for Lab 1a
- In C: Signed, Unsigned and Casting

- Consequences of finite width representations
* Overflow, sign extension

- CS sprung out of mathematics
* Creators wanted to match existing axioms

27



YA/ UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Encoding Integers

« The hardware (and C) supports two flavors of integers
" unsigned — only the non-negatives

" signed — both negatives and non-negatives

+» Cannot represent all integers with w bits
= Only 2% distinct bit patterns
" Unsigned values: 0..2"-1
= Signed values:  —2W~1 . 2w-13

+» Example: 8-bit integers (e.g. char)

-00 =€ -—FPFFPFPFPFPFPFPo# - > +00
—128 +128 +256

—28-1 0 +28-1 +2°

o

28



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Unsigned Integers; “standard” binary

» Unsigned values follow the standard base 2
system

¢ b7b6b5b4b3b2b1b0 —_ b727 + b626 + .- 4 b121 + bOZO

- Add and subtract using the normal “carry” and
“borrow” rules, just in binary

63 00111111

+ 8| [+00001000
71 01000111

o Useful: 2N-1 +2N=-2 4+ +2+1=2N_1
 je. Nonesinarow=2N—-1

29



w UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Sign-Magnitude EncoduEm

Most Significant B|t

- Designate the high-order bit (I\@as sign bit”
* sign=0: positive #s; sign=1. negative #s
- Benefits:

* Using MSB as sign bit matches positive numbers with
unsigned

* All zeros encoding is still =0
- Examples (8 bits):
* 0x00 = 00000000, is non-negative; the sign bitis 0
* Ox7F = 01111111, is non-negative (+127. )
* 0x85 = 10000101, is negative (-3, ,)
* 0x80 = 10000000, is negative... ... zero???

30



YA/ UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Sign-Magnitude Encoding

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks?

15 0

14

1111
1110
1101

1100

0000
0001
0010

0011

1111
1110
1101

1100

0000
0001
0010

0011

13

12

Sign and
Unsigned 8

Magnitude
1111011 0100 | 4 _3\1011 8 0100

1010 0101 1010
1001 0110 1001
1000 0111

31



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Sign-Magnitude Encoding

- MSB is the sign bit, rest of the bits are magnitude

- Drawbacks:

* Two representations of O (bad for checking equality)
~7 +0

1111
1110
1101

1100

0000
0001
0010

0011

Sign and
_3 1011 Magnitude 0100

1010
1001

32



YA UNIVERSITY of WASHINGTON L02: Memory and Data |

Sign-Magnitude Encoding

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:

* Two representations of 0 (bad for checking equality)

e Arithmetic is cumbersome ) -7 +0 .
- 1111 0000

- Example: 4-3 != 4+ (—3)_5 1110 000t \ 4 5

4 0100 41 0100 4 1101 0010 .
- 3| =_0011 +1+ 1011 1100 Sign and 0011
1 0001 =3 1111 5 1011 Magnitude 0100 |, 4
v - X 1010
-2 1001 +5

* Negatives “increment” in wrong -

direction! -0 +7

CSE351, Summer 2021

33



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Two’s Complement

- Let’s fix these problems:
1) “Flip” negative encodings so incrementing works

34



W UNIVERSITY of WASHINGTON L02: Memory and Data |

Two’s Complement

L)

+ Let’s fix these problems:

1) “Flip” negative encodings so incrementing works
2) “Shift” negative numbers to eliminate —0

L)

+» MSB still indicates sign!

= This is why we represent one
more negative than positive
number (-2V71 to 2V~1.9)

CSE351, Summer 2021

35



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Two’s Complement Negatives

- Accomplished with one neat (mathematical) trick!

by,—1 has weight —2W~1, other bits have usual weights +21
Z |

w-1 w-2 e 0

* 4-bit Examples:

- 1010, unsigned: _3
1%25+02241°21+0%20 = 10 1101 0010

- 1010, two’s complement: 1100 Two’s 0011

_1* %+O*22+1*21+0*20 =6 _ s | 1011 Complement  10p
1010
1001
1000

1111
1110

0000
0001

0111

36



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Two’s Complement Negatives

- Accomplished with one neat (mathematical) trick!

b._1 has weight —2%¥~1, other bits have usual weights +2!

b b

w-1 w-2 e 0

1111
1110

0000
0001
1101 0010

1100 Two's 0011
1011 Complement 0100

1010
1001
1000

o -1 represented as:
1111, = -2%+(2° — 1) -3
- MSB makes it super negative! -4

- Add up all the other bits to get
back up to -1

0111

37



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Why Two’s Complement is So Great

- Roughly same number of (+) and (-) numbers
- Positive number encodings match unsigned
- oingle zero encoding, all zeros

- Simple negation procedure: ->

* Get negative representation -3
of any integer by taking _4
bitwise complement and
then adding one!

(~x + 1 == -x)

0000
0001
1101 0010

1100 Twe's 0011
_c 1011 Complement 0100

1010
1001

1111
1110

38



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Polling Question [Int | - b]

- Take the 4-bit number encoding x = 0b1011

- What value would this encoding have in...
* Unsigned? Sign and Magnitude? Two’s Complement?

¥ 1
Y 3
&Y

39



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Integers

@)

o Shifting and arithmetic operations — (Lab 1a)

©)

@)

Binary representation of integers
* Unsigned and signed

In C: Signed, Unsigned and Casting

Consequences of finite width representations
* Overflow, sign extension

40



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Shift Operations

- Left shift (x<<n) bit vector x by n positions
* Throw away (drop) extra bits on left
* Fill with 0s on right
- Right shift (x>>n) bit-vector x by n positions
* Throw away (drop) extra bits on right
* Logical shift (for unsigned values)
- Fill with 0s on left
 Arithmetic shift (for signed values)
- Replicate most significant bit on left
- Maintains sign of x

41



YA UNIVERSITY of WASHINGTON L02: Memory and Data |

CSE351, Summer 2021

Shift Operations * | 0010 0010
x<<3 | 0001 0000
° Left Shlft (X << n) logical: | x>>2 1 0000 1000
o Fill with Os on right -
. R|ght Sh|ft (X - n) arithmetic: | x>>2 | 0000 1000
o Logical shift (for unsigned values) <« 11010 0010
« Fill with Os on left
o Arithmetic shift (for signed values) x<<3 10001 0000
= Replace with MSB on left ogical: | x>52 | 0010 1000
Notes arithmetic: | x>>2 11110 1000

o Shift by n <0 or n >=w are undefined

o In C: behavior of >> is determined by the compiler

=« Depends on type of x (signed/unsigned)

42




YA/ UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Shifting Arithmetic?

- What are the following computing?

* x>>n
- 0b 0100 >> 1 = 0b 0010
- 0b 0100 >> 2 = 0b 0001
- Divide by 2"
* x<<n
- 0b 0001 << 1 = 0b 0010
- 0b 0001 << 2 = 0b 0100
. Multiply by 2"
- ohifting “faster” than multiply/divide operations

43



W UNIVERSITY of WASHINGTON L02: Memory and Datal | CSE351, Summer 2021

Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned
and signed numbers (just manipulates bits)

* Difference comes during interpretation: x*2"?
Signed Unsigned

Y A
Ll1=x<<2; 0001100100 = 100 100
L2=x<<3; 00011001000 =__-506 200

[signedov@
L3=x<<4; 000110010000 = -112 144

| unsigned overflow

44



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Right Shifting Arithmetic 8-bit
Examples

- Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed

values

* Logical Shift: x/2"7?

xu = 240u; 11110000 = 240
NN

Rlu=xu>>3,; 00011110000 = 30

|
~J

R2u=xu>>5; 0000011110000

rounding
(down)

45



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Right Shifting Arithmetic 8-bit
Examples

- Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed

values

* Arithmetic Shift: x/2"7?

xs = —1o6; 11110000 = -16
RN

Rls=xu>>3; 11111110000 = =2

|
|
|_\

R2s=xu>>5; 1111111110000

[ roundﬁ
(down)

46



w UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Summary

Bit-level operators allow for fine-grained manipulations of
data

* Bitwise AND (&), OR (), and NOT (~) different than logical AND
(&&), OR (] 1), and NOT (!)

* Especially useful with bit masks
Choice of encoding scheme is important
* Tradeoffs based on size requirements and desired operations

Integers represented using unsigned and two’s
complement representations

* Limited by fixed bit width

* We'll examine arithmetic operations next lecture

Shifting is a useful bitwise operator

* Right shifting can be arithmetic (sign) or logical (0)

* Can be used in multiplication with constant or bit masking

47



YA/ UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Knowledge & Insulation



YA/ UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

George Boole

- A committed educator!

* Walked in the rain to
teach, taught in wet
clothes, wife wrapped
him in wet blankets to
cure him

- Philosophy, logic
* Pseudo-religious
doctrine of psychology

* HEAVILY influenced by
Indian systems of logic

49



YA UNIVERSITY of WASHINGTON L02: Memory and Data |

CSE351, Summer 2021

Colonialism in 19" Century

- 18" /19" century India under colonial rule
* Re-education camps, the whole business

“On examining this work | saw in it, not merely merit
worthy of encouragement, but merit of a peculiar
kind, the encouragement of which, as it appeared to

me, was likely to promote native effort towards the
restoration of the native mind in India.”

DeMorgan, prefacing: “A treatise on problems of maxima and minima,
solved by algebra.” by Ram Chundra, European Publication in 1859

50



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Claude Shannon (1916-2001)

- Mathematician

* Took a philosophy
class! Not CS!

* Learned Boole’s
algebra, realized
relevance to digital logic

- 1937 Master’s Thesis

* “Founded” information
theory

51



YA/ UNIVERSITY of WASHINGTON

L02: Memory and Data |

CSE351, Summer 2021

| mean, it’s a close connection

Ba dum dum

An electromagnetic relay.

=

NC contact

Shading coil Armature
(AC only) '\
Spring 7 \ )

\\ e
E “—-— C

Air
gap NO contact

~— Electromagnet

‘_}

=

(a) Parts of the relay

52



UNIVERSITY of WASHINGTON Lo2: Memory and Datal ~ CSE351, Summer 2021

The “best” ideas come
from outside CS!

o
8-




YA/ UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Insulation: a metaphor

1 Javaand C 71
CSE154 (Web) ol o
ERREE T e e 'Higher than we'll go
CSE14X (Java) ‘ |
I Memory, Caches
Scale, Coherence Processes
E ~ Virtual Memory
Memory Allocation
Programs - x86 Assembly
BE] E ........... | Procedures, Stacks
Executables
Arrays, Structs
\: Qata Y
() —r,, - Memory, Data
: Integers, Floats
: CSE 369 (Gates)

54



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Insulation: a metaphor

- It keeps us warm!

* |t protects us from the A
outside! .

S (_) _S_E_‘l-\‘:'w‘_i-(yy -ep -) ----- Higher than wé’il go
- It can be harmful! e I
Scale, Coherence | | Processes
* Asbestos, clearly gy Abeaion

* Fiberglass is still bad TR - i
Executables

* Modern alternatives still { o o Arays, Structs
harmful ' . Em
- CSE 369 (Gates)

........................
i CSE 371 (Circuits)  Deeper than we'll go

________________________

55



UNIVERSITY of WASHINGTON Lo2: Memory and Datal ~  CSE351, Summer 2021

Insulation keeps us
comfortable and
protected.



UNIVERSITY of WASHINGTON Lo2: Memory and Datal ~ CSE351, Summer 2021

I’d argue that CS is
insulated!
But, why?



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Amy’s Keynote

. Briefly, CS has been a safe space for:

O

O O O O O

Women, whose jobs were automated by computers
Bullied kids that liked calculators

Wealthy “young geeks” (me)

Closeted trans kids (me)

Autistic people (me)

Queer folks trying to move to more progressive cities
(SF/Seattle)

Those seeking social mobility

58



w UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Amy’s Keynote

. Briefly, CS has been a safe space for:
o Women, whose jobs were automated by computers
Bullied kids that liked calculators
Wealthy “young geeks” (me)
Closeted trans kids (me)
Autistic people (me)
Queer folks trying to move to more progressive cities
(SF/Seattle)
o Those seeking social mobility
. Y’all aren’t the target audience, what’d you
think?

O O O O O

59



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Autism, extremely briefly

Aiﬁ Invisible Strings
/ @M _Kelter

In the last few decades, we have detected
thousands of planets outside of our solar
system. They did not suddenly appear at the
time we found them. No one calls it an
"exoplanet epidemic”. The planets were
always there, just previously undiscovered.
This is a tweet about autism.

More information @ https://autisticadvocacy.org/about-asan/about-autism/

60


https://autisticadvocacy.org/about-asan/about-autism/

W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Autism, extremely briefly

« Special interests: intense, passionate fixations
on topics, “little professors”
o Turing was “obsessed” with codes and ciphers, didn’t
care about much else
« Theory of mind (some low, some high):
o Understanding that the brains of others are different
than yours
. Empathy (some low, some high):
o | have to be careful who I'm holding space for, others
not so much
« Communication

o Neurodiverse folks tend to communicate well with
each other, less well with neurotypical folks

61



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Autism, and computing

. Attention to detail highly valued in CS

» Historically, CS is an intellectual space centering
rules (theory) and routines (algorithms)

. Little social interaction required, “don’t bother
me” assumed

» Lots of space to pursue special interests without
interruption!

. Most of the world expect neurotypical
conformity, most of CS emphasizes
conformity along some* aspects of
neurodiversity
o Again, UW is much better than my undergrad

62



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Insulation and me

- | identify as neurodiverse (autistic), trans, enby
- CS #s was a great closet...
* Encouraged to be "in my head”, outside my body
* Focus on patterns, abstract concepts
* Completely ignore society
- ...but, really, that's no way to live
* | promise, it would’'ve killed me
- At some point, leave the house and go exploring!
* Though camping can still be a stretch (==

63



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

| promise, I’'m not alone



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

| promise, I’'m not alone

- Generally, transgender rate of 0.5% to 1%

- Autism Spectrum Disorder (ASD) around 1.5%
o 8-15% ASD among trans™ folks!

- Higher rates of ASD in STEM than elsewhere

* Most CS folks tend not to recognize neurodiversity

- | got to undergrad and realized that lots of folks
were like me, realized later that most of them
were autistic.

65



W UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Making Space in CS

- Foundations of computing:
* Insulating for safety (i.e. being trans in Seattle, at UW)
* Exploring new frontiers (even just philosophy)
- Both foundational!
* Though, many focus on one or the other
* Technical/Socio-technical; you need both!
- CS needs both to survive and thrive!
* New ideas and safe spaces both necessary

66



YA/ UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Making Space in CS

®] 9 N
v
» {]
i 4 R




w UNIVERSITY of WASHINGTON L02: Memory and Data | CSE351, Summer 2021

Exploring Space, Making Space

- Goodness, if you can, take classes outside CS
* Even better if they're non-technical!
* Philosophy, Art, History, Education??
- Claude Shannon, Founder of Information Theory
* Go take a class because it looks interesting!
* Maybe it'll be relevant to computing?
* More likely, you'll learn something about yourself!

68



Insulation is Necessary
and Deadly!

Try to make space
when you can!



