
L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Integers I
CSE 351 Summer 2021

http://xkcd.com/257/

Instructor:
Mara Kirdani-Ryan

Teaching Assistants:
Kashish Aggarwal
Nick Durand
Colton Jobes
Tim Mandzyuk

http://xkcd.com/257/
http://www.youtube.com/watch?v=GC_mV1IpjWA

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Gentle and Loving Reminders!
o No lecture on Monday 7/5 (campus holiday)
o hw3 due Wednesday 6/30 – 8pm
o Hw4, hw5, lab1a due Friday 7/2 – 8pm

• I wanted y’all to have a holiday without deadlines!
• 1 late day on lab1a would take you to Monday, 8pm

o For the rest of the course:
• Pre-lecture readings are due at 10am

o Other reminders? Does this feel ok?
• You all belong in computing!

2

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

A note on the first survey
● I didn’t change everything from last quarter..

○ Booooooooooooooooooo
● If there’s anything that you’d like us to know,

difficulties with remote instruction, personal stuff
that’s coming up, please, please let us know!
○ marakr@cs.washington.edu, if you’d prefer privacy

● This pandemic’s been a lot!
○ Last August, I wasn’t sure if I could keep living
○ Everyone I know’s been through it.
○ Let us know how we can help!

3

mailto:marakr@cs.washington.edu

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Classroom norms on
language?
Reach out with concerns!

4

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

How are y’all feeling
today?

5

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Seattle’s hot!

Submit lab1a by Monday@8pm, only
using one late day!

6

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Memory, Data, and Addressing
o Representing information as bits and bytes

• Binary, hexadecimal, fixed-widths
o Organizing and addressing data in memory

• Memory is a byte-addressable array
• Machine “word” size = address size = register size
• Endianness – ordering bytes in memory

o Manipulating data in memory using C
• Assignment
• Pointers, pointer arithmetic, and arrays

o Boolean algebra and bit-level manipulations

7

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Design Tradeoffs
o When problems don’t have a clear answer, you

have tradeoffs!
• Playing card representations
• Integers (later floats)

o Tradeoffs encode priorities!
• As well as ideology

o Lots of ideology in 351, emoji to signal ideology?
o When you see ideology (especially when it’s

unexamined), react with ___

8

🤖
🏠

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Breakouts!

Does computing feel like a
safe space?
Does it feel oppressive?
…but first…

9

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Discussion Norms
o Everyone’s experience is valid!
o Feelings are valid too!
o Everyone should have space to share!

• Though, no one’s required to share. A “yes” or “no”
without explanation is more than enough.

• Saying “I don’t feel like sharing” is good too!
o I’ve got a whole heap of hurt here!

• Some of y’all might as well
• Try to be compassionate to everyone!

o A brief grounding…

10

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Breakouts!
● What are your experiences bringing

other interests into computing?
● Does computing feel like a safe

space?
● Have you felt encouraged to pursue

non-CS interests?

11

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Learning Objectives
● Understanding this material means you can…

○ Use bitwise and logical operations to perform bit-level
manipulations, &, |, ^, ~, >>, and << (lab1a)

○ Convert between decimal and binary representations
for signed and unsigned integers

○ Explain tradeoffs between sign-magnitude and two’s
complement encodings

○ Begin to recognize CS ideology, especially when
considering tradeoffs between different designs

○ Develop a sense of how knowledge insulation affect
CS, and more importantly, how knowledge insulation
affects you!

12

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Boolean Algebra
● Developed by George Boole in 19th Century

○ Algebraic representation of logic (T -> 1, F -> 0)
○ AND: A&B=1 when both A is 1 and B is 1
○ OR: A|B=1 when either A is 1 or B is 1
○ XOR: A^B=1 when either A is 1 or B is 1; not both
○ NOT: ~A=1 when A is 0 and vice versa
○ DeMorgan’s law: ~(A | B) = ~A & ~B

13

& 0 1

0 0 0

1 0 1

| 0 1

0 0 1

1 1 1

^ 0 1

0 0 1

1 1 0

~

0 1

1 0

AND OR XOR NOT

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

General Boolean Algebras

14

 01101001
& 01010101
01000001

 01101001
| 01010101
01111101

 01101001
^ 01010101
00111101

~ 01010101
10101010

 01010101
| 11110000
 11110101

 01010101
^ 01010101
 00000000

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Bit-Level Operations in C
o & (AND), | (OR), ^ (XOR), ~ (NOT)

• View arguments as bit vectors, apply operations bitwise
• Apply to any “integral” data type

• long, int, short, char, unsigned
o Examples with char a, b, c;

• a = (char) 0x41; // 0x41->0b 0100 0001
b = ~a; // 0b 1011 1110 ->0xBE

• a = (char) 0x69; // 0x69->0b 0110 1001
b = (char) 0x55; // 0x55->0b 0101 0101
c = a & b; // 0b 0100 0001 ->0x41

• a = (char) 0x41; // 0x41->0b 0100 0001
b = a; // 0b 0100 0001
c = a ^ b; // 0b 0000 0000 ->0x0

15

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Contrast: Logic Operations
o Logical ops in C: && (AND), || (OR), ! (NOT)

• 0 is False, anything nonzero is True
• Always return 0 or 1
• Early termination (short-circuit evaluation) of &&, ||

o Examples (char data type)
• !0x41 -> 0x00
• !0x00 -> 0x01
• !!0x41 -> 0x01
• p && *p

• If p is the null pointer (0x0), then p is never
dereferenced!

16

▪ 0xCC && 0x33 -> 0x01
▪ 0x00 || 0x33 -> 0x01

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

First Floor: Data
o How do we represent

data (strings, numbers)
computationally?

o What limits exist? Why?
o What values were

encoded into data
representations?

o What was prioritized?
Why?

o Today: Integers!

17

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

But before we get to integers….
o Encode a standard deck of playing cards
o 52 cards in 4 suits

• How do we encode suits, face cards?
o What operations do we want to make easy to implement?

• Which is the higher value card?
• Are they the same suit?

18

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Two possible representations
1. 1 bit/card (52): bit that refers to card set to 1

• “One-hot” encoding (similar to set notation)
• Drawbacks:

• Hard to compare values and suits
• Large number of bits required

2. 1 bit/suit (4), 1 bit/number (13): 2 bits set
• Pair of one-hot encoded values
• Easier to compare suits/values; but lots of bits used

19

low-order 52 bits of 64-bit word

4 suits 13 numbers

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Two better representations

20

low-order 6 bits of a byte

suit value

♣ 00
♦ 01
♥ 10
♠ 11

K Q J . . . 3 2 A

1101 1100 1011 ... 0011 0010 0001

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Design Tradeoffs
o We went from 52 bits to 6 bits

• Are 6 bit representations “better” than 52 bit ones?
• It depends!!! What are we prioritizing?

o In general, folks prioritize along their ideology
• CS: Efficiency, minimalism
• Frequently choice between space/speed, without

considering socio-technical factors
o There usually isn’t a “perfect” decision!

21

🤖
🏠

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Compare Card Suits
char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if (sameSuitP(card1, card2)) { ... }

22

SUIT_MASK = 0x30 = 0 0 1 1 0 0 0 0

suit value

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
 return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
 //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Compare Card Suits
char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if (sameSuitP(card1, card2)) { ... }

23

SUIT_MASK = 0x30 = 0 0 1 1 0 0 0 0

suit value

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on
another bit vector v.
Here we turn all but the bits of interest in v to 0.

#define SUIT_MASK 0x30 // 0011 0000

int sameSuitP(char card1, char card2) {
 return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
 //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

returns int equivalent

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Compare Card Suits

24

#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
 return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
 //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1

0 0 1 1 0 0 0 0 SUIT_MASK 0 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
!(x^y) equivalent to x==y

🃂 🃎&

=

^

!

=

&

mask: a bit vector designed to achieve a desired
behavior when used with a bitwise operator on
another bit vector v.
Here we turn all but the bits of interest in v to 0.

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Compare Card Values

25

VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1

suit value

#define VALUE_MASK 0x0F // 0000 1111

int greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));
}

char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
...
if (greaterValue(card1, card2)) { ... }

mask: a bit vector designed to achieve a
desired behavior when used with a
bitwise operator on another bit vector v.

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Compare Card Values

26

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));
}

0 0 1 0 0 0 1 0 🃂 0 0 1 0 1 1 0 1🃎
0 0 0 0 1 1 1 1 VALUE_MASK 0 0 0 0 1 1 1 1

& &

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 1
==

210 > 1310
0 (false)

mask: a bit vector designed to achieve a
desired behavior when used with a
bitwise operator on another bit vector v.

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Integers
o Binary representation of integers

• Unsigned and signed
o Shifting and arithmetic operations – for Lab 1a
o In C: Signed, Unsigned and Casting
o Consequences of finite width representations

• Overflow, sign extension
o CS sprung out of mathematics

• Creators wanted to match existing axioms

27

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Encoding Integers
o

28

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Unsigned Integers; “standard” binary
o

29

 00111111
+00001000
 01000111

 63
+ 8
 71

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Sign-Magnitude Encoding
o Designate the high-order bit (MSB) as “sign bit”

• sign=0: positive #’s; sign=1: negative #’s
o Benefits:

• Using MSB as sign bit matches positive numbers with
unsigned

• All zeros encoding is still = 0
o Examples (8 bits):

• 0x00 = 000000002 is non-negative; the sign bit is 0
• 0x7F = 011111112 is non-negative (+12710)
• 0x85 = 100001012 is negative (-510)
• 0x80 = 100000002 is negative...

30

... zero???

Most Significant Bit

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Sign-Magnitude Encoding
o MSB is the sign bit, rest of the bits are magnitude
o Drawbacks?

31

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

0
 1

 2

 3

 4

 5

 6
 78

9

10

11

12

13

14
15

Unsigned
Sign and

Magnitude

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Sign-Magnitude Encoding
o MSB is the sign bit, rest of the bits are magnitude
o Drawbacks:

• Two representations of 0 (bad for checking equality)

32

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

Sign and
Magnitude

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Sign-Magnitude Encoding
o MSB is the sign bit, rest of the bits are magnitude
o Drawbacks:

• Two representations of 0 (bad for checking equality)
• Arithmetic is cumbersome

• Example: 4-3 != 4+(-3)

• Negatives “increment” in wrong
direction!

33

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 0

– 1

– 2

– 3

– 4

– 5

– 6
– 7

 0100
+ 1011
 1111

 0100
- 0011
 0001

 4
- 3
 1

✓

 4
+
-3
 -7 ✗

Sign and
Magnitude

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Two’s Complement
o Let’s fix these problems:

1) “Flip” negative encodings so incrementing works

34

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 7

– 6

– 5

– 4

– 3

– 2

– 1
– 0

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Two’s Complement

35

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Two’s Complement Negatives
o Accomplished with one neat (mathematical) trick!

• 4-bit Examples:
• 10102 unsigned:

 1*23+0*22+1*21+0*20 = 10
• 10102 two’s complement:

 -1*23+0*22+1*21+0*20 = –6

36

. . . b0bw-1 bw-2

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Two’s
Complement

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Two’s Complement Negatives
o Accomplished with one neat (mathematical) trick!

o -1 represented as:
11112 = -23+(23 – 1)
• MSB makes it super negative!
• Add up all the other bits to get

back up to -1

37

. . . b0bw-1 bw-2

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Two’s
Complement

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Why Two’s Complement is So Great
o Roughly same number of (+) and (–) numbers
o Positive number encodings match unsigned
o Single zero encoding, all zeros

o Simple negation procedure:
• Get negative representation

of any integer by taking
bitwise complement and
then adding one!
(~x + 1 == -x)

38

0000
0001

0011

1111
1110

1100

1011

1010

1000 0111
0110

0100

0010

0101
1001

1101

+ 0
+ 1

+ 2

+ 3

+ 4

+ 5

+ 6
+ 7– 8

– 7

– 6

– 5

– 4

– 3

– 2
– 1

Two’s
Complement

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Polling Question [Int I - b]
o Take the 4-bit number encoding x = 0b1011
o What value would this encoding have in...

• Unsigned? Sign and Magnitude? Two’s Complement?
🧡 -4
💛 -5
💚 11
💙 -3
🥶 Help!

39

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Integers
o Binary representation of integers

• Unsigned and signed
o Shifting and arithmetic operations – (Lab 1a)
o In C: Signed, Unsigned and Casting
o Consequences of finite width representations

• Overflow, sign extension

40

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Shift Operations
o Left shift (x<<n) bit vector x by n positions

• Throw away (drop) extra bits on left
• Fill with 0s on right

o Right shift (x>>n) bit-vector x by n positions
• Throw away (drop) extra bits on right
• Logical shift (for unsigned values)

• Fill with 0s on left
• Arithmetic shift (for signed values)

• Replicate most significant bit on left
• Maintains sign of x

41

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Shift Operations
● Left Shift (x << n)

○ Fill with 0s on right
● Right shift (x >> n)

○ Logical shift (for unsigned values)
■ Fill with 0s on left

○ Arithmetic shift (for signed values)
■ Replace with MSB on left
■

● Notes
○ Shift by n < 0 or n >= w are undefined
○ In C: behavior of >> is determined by the compiler

■ Depends on type of x (signed/unsigned)

42

x 0010 0010

x<<3 0001 0000

logical: x>>2 0000 1000

arithmetic: x>>2 0000 1000

x 1010 0010

x<<3 0001 0000

logical: x>>2 0010 1000

arithmetic: x>>2 1110 1000

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Shifting Arithmetic?
o What are the following computing?

• x>>n
• 0b 0100 >> 1 = 0b 0010
• 0b 0100 >> 2 = 0b 0001
• Divide by 2n

• x<<n
• 0b 0001 << 1 = 0b 0010
• 0b 0001 << 2 = 0b 0100
• Multiply by 2n

o Shifting “faster” than multiply/divide operations

43

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Left Shifting Arithmetic 8-bit Example
o No difference in left shift operation for unsigned

and signed numbers (just manipulates bits)
• Difference comes during interpretation: x*2n?

44

x = 25; 00011001 =

L1=x<<2; 0001100100 =

L2=x<<3; 00011001000 =

L3=x<<4; 000110010000 =

25 25

100 100

-56 200

-112 144

Signed Unsigned

signed overflow

unsigned overflow

signed overflow

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Right Shifting Arithmetic 8-bit
Examples
o Reminder: C operator >> does logical shift on

unsigned values and arithmetic shift on signed
values
• Logical Shift: x/2n?

45

xu = 240u; 11110000 =

R1u=xu>>3; 00011110000 =

R2u=xu>>5; 0000011110000 =

240

30

7

rounding
(down)

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Right Shifting Arithmetic 8-bit
Examples
o Reminder: C operator >> does logical shift on

unsigned values and arithmetic shift on signed
values
• Arithmetic Shift: x/2n?

46

xs = -16; 11110000 =

R1s=xu>>3; 11111110000 =

R2s=xu>>5; 1111111110000 =

-16

-2

-1

rounding
(down)

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Summary
o Bit-level operators allow for fine-grained manipulations of

data
• Bitwise AND (&), OR (|), and NOT (~) different than logical AND

(&&), OR (||), and NOT (!)
• Especially useful with bit masks

o Choice of encoding scheme is important
• Tradeoffs based on size requirements and desired operations

o Integers represented using unsigned and two’s
complement representations
• Limited by fixed bit width
• We’ll examine arithmetic operations next lecture

o Shifting is a useful bitwise operator
• Right shifting can be arithmetic (sign) or logical (0)
• Can be used in multiplication with constant or bit masking

47

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Knowledge & Insulation

48

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

George Boole
o A committed educator!

• Walked in the rain to
teach, taught in wet
clothes, wife wrapped
him in wet blankets to
cure him

o Philosophy, logic
• Pseudo-religious

doctrine of psychology
• HEAVILY influenced by

Indian systems of logic

49

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Colonialism in 19th Century
o 18th /19th century India under colonial rule

• Re-education camps, the whole business

“On examining this work I saw in it, not merely merit
worthy of encouragement, but merit of a peculiar
kind, the encouragement of which, as it appeared to
me, was likely to promote native effort towards the
restoration of the native mind in India.”
DeMorgan, prefacing: “A treatise on problems of maxima and minima,
solved by algebra.” by Ram Chundra, European Publication in 1859

50

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Claude Shannon (1916-2001)
o Mathematician

• Took a philosophy
class! Not CS!

• Learned Boole’s
algebra, realized
relevance to digital logic

o 1937 Master’s Thesis
• “Founded” information

theory

51

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

I mean, it’s a close connection

52

Ba dum dum

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

The “best” ideas come
from outside CS!

53

🤖
🏠

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Insulation: a metaphor

54

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Insulation: a metaphor
o It keeps us warm!

• It protects us from the
outside!

o It can be harmful!
• Asbestos, clearly
• Fiberglass is still bad
• Modern alternatives still

harmful

55

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Insulation keeps us
comfortable and
protected.

56

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

I’d argue that CS is
insulated!
But, why?

57

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Amy’s Keynote
● Briefly, CS has been a safe space for:

○ Women, whose jobs were automated by computers
○ Bullied kids that liked calculators
○ Wealthy “young geeks” (me)
○ Closeted trans kids (me)
○ Autistic people (me)
○ Queer folks trying to move to more progressive cities

(SF/Seattle)
○ Those seeking social mobility

58

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Amy’s Keynote
● Briefly, CS has been a safe space for:

○ Women, whose jobs were automated by computers
○ Bullied kids that liked calculators
○ Wealthy “young geeks” (me)
○ Closeted trans kids (me)
○ Autistic people (me)
○ Queer folks trying to move to more progressive cities

(SF/Seattle)
○ Those seeking social mobility

● Y’all aren’t the target audience, what’d you
think?

59

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Autism, extremely briefly

60

More information @ https://autisticadvocacy.org/about-asan/about-autism/

https://autisticadvocacy.org/about-asan/about-autism/

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Autism, extremely briefly
● Special interests: intense, passionate fixations

on topics, “little professors”
○ Turing was “obsessed” with codes and ciphers, didn’t

care about much else
● Theory of mind (some low, some high):

○ Understanding that the brains of others are different
than yours

● Empathy (some low, some high):
○ I have to be careful who I’m holding space for, others

not so much
● Communication

○ Neurodiverse folks tend to communicate well with
each other, less well with neurotypical folks

61

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Autism, and computing
● Attention to detail highly valued in CS
● Historically, CS is an intellectual space centering

rules (theory) and routines (algorithms)
● Little social interaction required, “don’t bother

me” assumed
● Lots of space to pursue special interests without

interruption!
● Most of the world expect neurotypical

conformity, most of CS emphasizes
conformity along some* aspects of
neurodiversity
○ Again, UW is much better than my undergrad

62

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Insulation and me
o I identify as neurodiverse (autistic), trans, enby
o CS is was a great closet…

• Encouraged to be ”in my head”, outside my body
• Focus on patterns, abstract concepts
• Completely ignore society

o …but, really, that’s no way to live
• I promise, it would’ve killed me

o At some point, leave the house and go exploring!
• Though camping can still be a stretch 😁

63

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

I promise, I’m not alone

64

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

I promise, I’m not alone
o Generally, transgender rate of 0.5% to 1%
o Autism Spectrum Disorder (ASD) around 1.5%
o 8-15% ASD among trans* folks!
o Higher rates of ASD in STEM than elsewhere

• Most CS folks tend not to recognize neurodiversity

o I got to undergrad and realized that lots of folks
were like me, realized later that most of them
were autistic.

65

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Making Space in CS
o Foundations of computing:

• Insulating for safety (i.e. being trans in Seattle, at UW)
• Exploring new frontiers (even just philosophy)

o Both foundational!
• Though, many focus on one or the other
• Technical/Socio-technical; you need both!

o CS needs both to survive and thrive!
• New ideas and safe spaces both necessary

66

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Making Space in CS

67

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Exploring Space, Making Space
o Goodness, if you can, take classes outside CS

• Even better if they’re non-technical!
• Philosophy, Art, History, Education??

o Claude Shannon, Founder of Information Theory
• Go take a class because it looks interesting!
• Maybe it’ll be relevant to computing?
• More likely, you’ll learn something about yourself!

68

L02: Memory & Data IL02: Memory and Data I CSE351, Summer 2021

Insulation is Necessary
and Deadly!

Try to make space
when you can!

69

