Java and C (part II)

CSE 351 Spring 2021

Instructor: Teaching Assistants:

Ruth Anderson Allen Aby Joy Dang Alena Dickmann

Catherine Guevara Corinne Herzog Ian Hsiao

Diya Joy Jim Limprasert Armin Magness

Aman Mohammed Monty Nitschke Allie Pfleger

Mara Kirdani-Ryan Alex Saveau Sanjana Sridhar

Amy Xu

Administrivia

- Lab 5 (on Mem Alloc) due the last day of class (6/04)
 - Can be submitted at most ONE day late. (Sun 6/06)
- hw28 on Java and C due Wed (6/09)
- Unit Summary #4 due Wed (6/09)
 - No task #3 for Unit Summary #4
- Course evaluations now open
 - Please fill these out!
 - Separate ones for Lecture and Section
- Questions Docs: Use @uw google account to access!!
 - https://tinyurl.com/CSE351-21sp-Questions

Polling Question

What would you expect to be the order of contents in an instance of the Car class?

Vote in Ed Lessons

```
class Vehicle {
  int passengers;
  // methods not shown
}
class Car extends Vehicle {
  int wheels;
  // methods not shown
}
```

- A. header, Vehicle vtable ptr, passengers, Car vtable ptr, wheels
- B. Vehicle vtable ptr, passengers, wheels
- C. header, Vehicle vtable ptr, Car vtable ptr, passengers, wheels
- D. header, Car vtable ptr, passengers, wheels
- E. We're lost...

Roadmap

car *c = malloc(sizeof(car)); c->miles = 100;c->qals = 17;float mpg = get mpg(c); free(c);

Java:

```
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =
    c.getMPG();
```

Memory & data Integers & floats x86 assembly Procedures & stacks Executables Arrays & structs Memory & caches **Processes** Virtual memory Memory allocation Java vs. C

Assembly language:

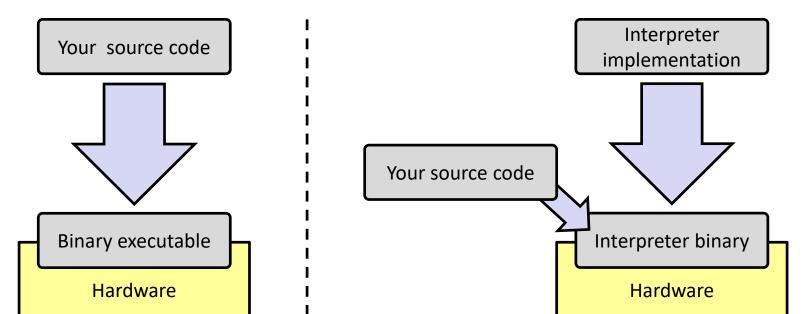
```
get mpg:
    pushq
            %rbp
            %rsp, %rbp
    movq
            %rbp
    popq
    ret
```

OS:

Machine code:

```
0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111
```

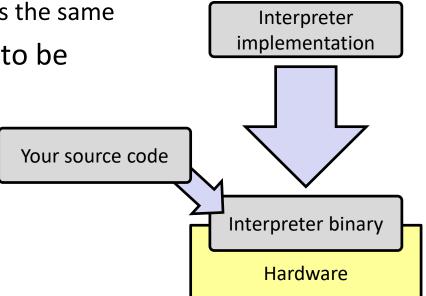

Computer system:



\mathbf{W} university of Washington

Implementing Programming Languages

- Many choices in programming model implementation
 - We've previously discussed compilation
 - One can also interpret
- Interpreters have a long history and are still in use
 - e.g., Lisp, an early programming language, was interpreted
 - e.g., Python, Javascript, Ruby, Matlab, PHP, Perl, ...


CSE351, Spring 2021

Interpreters

- Execute (something close to) the source code directly, meaning there is less translation required
 - This makes it a simpler program than a compiler and often provides more transparent error messages
- Easier to run on different architectures runs in a simulated environment that exists only inside the *interpreter* process

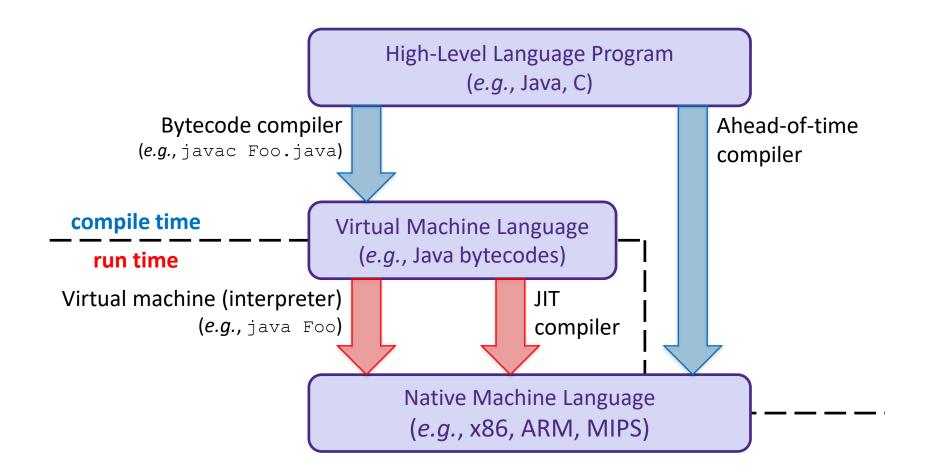
 Just port the interpreter (program), and then interpreting the source code is the same

Interpreted programs tend to be slower to execute and harder to optimize

Interpreters vs. Compilers

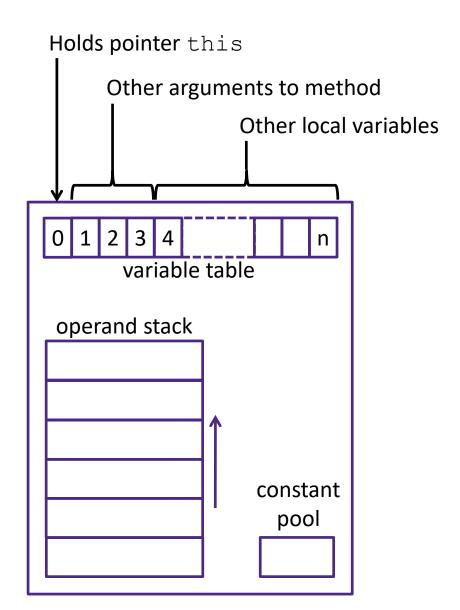
- Programs that are designed for use with particular language implementations
 - You can choose to execute code written in a particular language via either a compiler or an interpreter, if they exist
- "Compiled languages" vs. "interpreted languages" a misuse of terminology
 - But very common to hear this
 - And has some validation in the real world (e.g., JavaScript vs. C)
- Some modern language implementations are a mix
 - e.g., Java compiles to bytecode that is then interpreted
 - Doing just-in-time (JIT) compilation of parts to assembly for performance

Compiling and Running Java

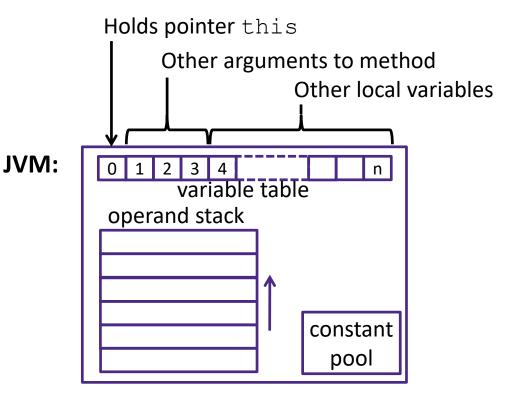

- 1. Save your Java code in a . java file
- 2. To run the Java compiler:
 - javac Foo.java
 - The Java compiler converts Java into Java bytecodes
 - Stored in a .class file
- 3. To execute the program stored in the bytecodes, these can be interpreted by the Java Virtual Machine (JVM)
 - Running the virtual machine: java Foo
 - Loads Foo.class and interprets the bytecodes

"The JVM"

Note: The JVM is different than the CSE VM running on VMWare. Yet *another* use of the word "virtual"!


- Java programs are usually run by a Java virtual machine (JVM)
 - JVMs <u>interpret</u> an intermediate language called *Java* bytecode
 - Many JVMs compile bytecode to native machine code
 - Just-in-time (JIT) compilation
 - http://en.wikipedia.org/wiki/Just-in-time compilation
 - Java is sometimes compiled ahead of time (AOT) like C

Virtual Machine Model



Java Bytecode

- Like assembly code for JVM, but works on all JVMs
 - Hardware-independent!
- Typed (unlike x86 assembly)
- Strong JVM protections

JVM Operand Stack

'i' = integer, 'a' = reference, 'b' for byte, 'c' for char, 'd' for double, ...


Bytecode:

No registers or stack locations!
All operations use operand stack

Compiled to (IA32) x86:

```
mov 8 (%ebp), %eax
mov 12 (%ebp), %edx
add %edx, %eax
mov %eax, -8 (%ebp)
```

A Simple Java Method

As stored in the .class file:

2A B4 00 05 B0

http://en.wikipedia.org/wiki/Java bytecode instruction listings

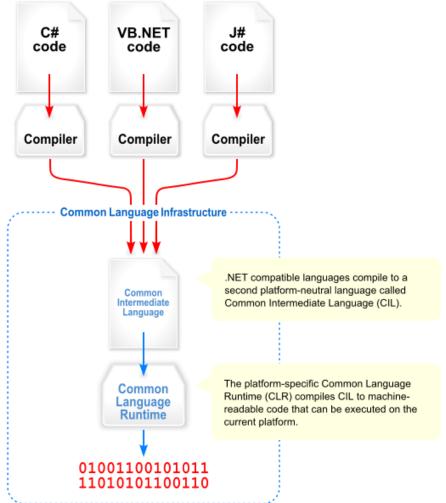
Class File Format

- Every class in Java source code is compiled to its own class file
- 10 sections in the Java class file structure:
 - Magic number: 0xCAFEBABE (legible hex from James Gosling Java's inventor)
 - Version of class file format: The minor and major versions of the class file
 - Constant pool: Set of constant values for the class
 - Access flags: For example whether the class is abstract, static, final, etc.
 - **This class**: The name of the current class
 - **Super class**: The name of the super class
 - Interfaces: Any interfaces in the class
 - **Fields**: Any fields in the class
 - Methods: Any methods in the class
 - Attributes: Any attributes of the class (for example, name of source file, etc.)
- A .jar file collects together all of the class files needed for the program, plus any additional resources (e.g. images)

Disassembled Java Bytecode

- > javac Employee.java
- > javap -c Employee

```
http://en.wikipedia.org/wiki/Java bytecode instruction listings
```


```
Compiled from Employee.java
class Employee extends java.lang.Object {
  public Employee(java.lang.String,int);
  public java.lang.String getEmployeeName();
  public int getEmployeeNumber();
Method Employee(java.lang.String,int)
0 aload 0
1 invokespecial #3 <Method java.lang.Object()>
4 aload 0
5 aload 1
6 putfield #5 <Field java.lang.String name>
9 aload 0
10 iload 2
11 putfield #4 <Field int idNumber>
14 aload 0
15 aload 1
16 iload 2
17 invokespecial #6 <Method void
                    storeData(java.lang.String, int)>
20 return
Method java.lang.String getEmployeeName()
0 aload 0
1 getfield #5 <Field java.lang.String name>
4 areturn
Method int getEmployeeNumber()
0 aload 0
1 getfield #4 <Field int idNumber>
4 ireturn
Method void storeData(java.lang.String, int)
```

Other languages for JVMs

- JVMs run on so many computers that compilers have been built to translate many other languages to Java bytecode:
 - AspectJ, an aspect-oriented extension of Java
 - ColdFusion, a scripting language compiled to Java
 - Clojure, a functional Lisp dialect
 - Groovy, a scripting language
 - JavaFX Script, a scripting language for web apps
 - JRuby, an implementation of Ruby
 - Jython, an implementation of Python
 - Rhino, an implementation of JavaScript
 - Scala, an object-oriented and functional programming language
 - And many others, even including C!
- Originally, JVMs were designed and built for Java (still the major use) but JVMs are also viewed as a safe, GC'ed platform

Microsoft's C# and .NET Framework

- C# has similar motivations as Java
 - Virtual machine is called the Common Language Runtime
 - Common Intermediate Language is the bytecode for C# and other languages in the .NET framework

We made it! 😊 😂

C:

```
car *c = malloc(sizeof(car));
c->miles = 100;
c->qals = 17;
float mpg = get mpg(c);
free(c);
```

Java:

```
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =
    c.getMPG();
```

Memory & data Integers & floats x86 assembly **Procedures & stacks** Executables Arrays & structs Memory & caches **Processes** Virtual memory Memory allocation Java vs. C

Assembly language:

```
get mpg:
    pushq
            %rbp
            %rsp, %rbp
    movq
            %rbp
    popq
    ret
```

OS:

Machine code:

```
0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111
```


Computer system:

