
CSE351, Spring 2021L27: Java and C - I

Java and C (part I)
CSE 351 Spring 2021
Instructor: Teaching Assistants:

Ruth Anderson Allen Aby Joy Dang Alena Dickmann

Catherine Guevara Corinne Herzog Ian Hsiao

Diya Joy Jim Limprasert Armin Magness

Aman Mohammed Monty Nitschke Allie Pfleger

Mara Kirdani-Ryan Alex Saveau Sanjana Sridhar

Amy Xu

https://xkcd.com/801/

https://xkcd.com/801/

CSE351, Spring 2021L27: Java and C - I

Administrivia

 Unit Summary #3 – due TONIGHT Friday (5/28)

 Submitted by Monday 5/31 – one day late

 Submitted by Tuesday 6/01 – two days late

 hw25 – Do EARLY, will help with Lab 5 (due Tues 6/01)

 Lab 5 (on Mem Alloc) due the last day of class (6/04)

 Light style grading

 Can be submitted at most ONE day late. (Sun 6/06)

 Questions Docs: Use @uw google account to access!!

 https://tinyurl.com/CSE351-21sp-Questions

2

https://tinyurl.com/CSE351-21sp-Questions

CSE351, Spring 2021L27: Java and C - I

Lab 5 Hints

 Struct pointers can be used to access field values,
even if no struct instances have been created – just
reinterpreting the data in memory

 Pay attention to boundary tag data

 Size value + 2 tag bits – when do these need to be updated
and do they have the correct values?

 The examine_heap function follows the implicit free list
searching algorithm – don’t take its output as “truth”

 Learn to use and interpret the trace files for testing!!!

 A special heap block marks the end of the heap

3

CSE351, Spring 2021L27: Java and C - I

Roadmap

4

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2021L27: Java and C - I

Java vs. C

 Reconnecting to Java (hello CSE143!)

 But now you know a lot more about what really happens
when we execute programs

 We’ve learned about the following items in C; now
we’ll see what they look like for Java:

 Representation of data

 Pointers / references

 Casting

 Function / method calls including dynamic dispatch

5

CSE351, Spring 2021L27: Java and C - I

Worlds Colliding

 CSE351 has given you a “really different feeling”
about what computers do and how programs execute

 We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”

 It’s not – it’s just a higher-level of abstraction

 Connect these levels via how-one-could-implement-Java in
351 terms

6

CSE351, Spring 2021L27: Java and C - I

Meta-point to this lecture

 None of the data representations we are going to talk
about are guaranteed by Java

 In fact, the language simply provides an abstraction
(Java language specification)

 Tells us how code should behave for different language
constructs, but we can't easily tell how things are really
represented

 But it is important to understand an implementation of the
lower levels – useful in thinking about your program

7

CSE351, Spring 2021L27: Java and C - I

Data in Java

 Integers, floats, doubles, pointers – same as C

 “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

 Java’s portability-guarantee fixes the sizes of all types
• Example: int is 4 bytes in Java regardless of machine

 No unsigned types to avoid conversion pitfalls
• Added some useful methods in Java 8 (also use bigger signed types)

 null is typically represented as 0 but “you can’t tell”

 Much more interesting:

 Arrays

 Characters and strings

 Objects
8

CSE351, Spring 2021L27: Java and C - I

Data in Java: Arrays

 Every element initialized to 0 or null

 Length specified in immutable field at start of array (int: 4B)
 array.length returns value of this field

 Since it has this info, what can it do?

9

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351, Spring 2021L27: Java and C - I

Data in Java: Arrays

 Every element initialized to 0 or null

 Length specified in immutable field at start of array (int: 4B)
 array.length returns value of this field

 Every access triggers a bounds-check
 Code is added to ensure the index is within bounds

 Exception if out-of-bounds

10

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

To speed up bounds-checking:
• Length field is likely in cache
• Compiler may store length field

in register for loops
• Compiler may prove that some

checks are redundant
5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351, Spring 2021L27: Java and C - I

Data in Java: Characters & Strings

 Two-byte Unicode instead of ASCII
 Represents most of the world’s alphabets

 String not bounded by a '\0' (null character)

 Bounded by hidden length field at beginning of string

 All String objects read-only (vs. StringBuffer)

11

Example: the string “CSE351”

43 \0

0 1 4

53 45 33 35 31

7

C:
(ASCII)

Java:
(Unicode)

16

6 43 00 53 00 45 00 33 00 35 00 31 00

0 4 8

CSE351, Spring 2021L27: Java and C - I

Data in Java: Objects

 Data structures (objects) are always stored by reference, never
stored “inline”
 Include complex data types (arrays, other objects, etc.) using references

12

C:

 a[] stored “inline” as part of
struct

struct rec {

int i;

int a[3];

struct rec *p;

};

Java:

 a stored by reference in object

class Rec {

int i;

int[] a = new int[3];

Rec p;

...

}

i a p

0 4 16 24

i a p

0 4 2012

4 16

3

0

CSE351, Spring 2021L27: Java and C - I

Pointer/reference fields and variables

 In C, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct
 (*r).a is so common it becomes r->a

 In Java, all non-primitive variables are references to objects
 We always use r.a notation

 But really follow reference to r with offset to a, just like r->a in C

 So no Java field needs more than 8 bytes

13

struct rec *r = malloc(...);

struct rec r2;

r->i = val;

r->a[2] = val;

r->p = &r2;

r = new Rec();

r2 = new Rec();

r.i = val;

r.a[2] = val;

r.p = r2;

C: Java:

CSE351, Spring 2021L27: Java and C - I

Pointers/References

 Pointers in C can point to any memory address

 References in Java can only point to [the starts of] objects
 Can only be dereferenced to access a field or element of that object

14

struct rec {

int i;

int a[3];

struct rec *p;

};

struct rec* r = malloc(…);

some_fn(&(r->a[1])); // ptr

class Rec {

int i;

int[] a = new int[3];

Rec p;

}

Rec r = new Rec();

some_fn(r.a, 1); // ref, index

r r

i a p

0 4 16 24

i a p

0 4 2012

int[3]

4 16

3

0

Java:C:

CSE351, Spring 2021L27: Java and C - I

Casting in C (example from Lab 5)

 Can cast any pointer into any other pointer
 Changes dereference and arithmetic behavior

15

struct BlockInfo {

size_t sizeAndTags;

struct BlockInfo* next;

struct BlockInfo* prev;

};

typedef struct BlockInfo BlockInfo;

...

int x;

BlockInfo *b;

BlockInfo *newBlock;

...

newBlock = (BlockInfo *) ((char *) b + x);

...

Cast back into
BlockInfo * to use
as BlockInfo struct

Cast b into char * to
do unscaled addition

s n p

80 16 24

s n p

x

CSE351, Spring 2021L27: Java and C - I

Type-safe casting in Java
 Can only cast compatible object references

 Based on class hierarchy

16

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

CSE351, Spring 2021L27: Java and C - I

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

Type-safe casting in Java
 Can only cast compatible object references

 Based on class hierarchy

17

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

✓ Everything needed for Vehicle also in Car
✓ v1 is declared as type Vehicle
✗ Compiler error: Incompatible type – elements in

Car that are not in Boat (siblings)

CSE351, Spring 2021L27: Java and C - I

Java Object Definitions

19

class Point {

double x;

double y;

Point() {

x = 0;

y = 0;

}

boolean samePlace(Point p) {

return (x == p.x) && (y == p.y);

}

}

...

Point p = new Point();

...

constructor

fields

method(s)

creation

CSE351, Spring 2021L27: Java and C - I

Java Objects and Method Dispatch

 Virtual method table (vtable)
 Like a jump table for instance (“virtual”) methods plus other class info

 One table per class

 Each object instance contains a vtable pointer (vptr)

 Object header : GC info, hashing info, lock info, etc.

20

code for Point() code for samePlace()

vtable for class Point:

q

xvptr yheader

Point object

p
xvptr yheader

Point object

CSE351, Spring 2021L27: Java and C - I

Java Constructors

 When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

21

Point p = new Point(); Point* p = calloc(1,sizeof(Point));

p->header = ...;

p->vptr = &Point_vtable;

p->vptr[0](p);

Java:

code for Point() code for samePlace()

vtable for class Point:

p
xvptr yheader

Point object

C pseudo-translation:

CSE351, Spring 2021L27: Java and C - I

Java Methods

 Static methods are just like functions

 Instance methods:
 Can refer to this;
 Have an implicit first parameter for this; and
 Can be overridden in subclasses

 The code to run when calling an instance method is chosen at
runtime by lookup in the vtable

22

p.samePlace(q); p->vptr[1](p, q);

Java: C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point:

p

xvptr yheader

Point object

CSE351, Spring 2021L27: Java and C - I

Subclassing

 Where does “z” go? At end of fields of Point
 Point fields are always in the same place, so Point code can run on
ThreeDPoint objects without modification

 Where does pointer to code for two new methods go?
 No constructor, so use default Point constructor

 To override “samePlace”, use same vtable position

 Add new pointer at end of vtable for new method “sayHi”

23

class ThreeDPoint extends Point {

double z;

boolean samePlace(Point p2) {

return false;

}

void sayHi() {

System.out.println("hello");

}

}

CSE351, Spring 2021L27: Java and C - I

Subclassing

24

New code for
samePlace

Old code for
constructor

sayHi tacked on at end
Code for
sayHi

class ThreeDPoint extends Point {

double z;

boolean samePlace(Point p2) {

return false;

}

void sayHi() {

System.out.println("hello");

}

}

xvptr yheader

ThreeDPoint object

z

constructor samePlacevtable for ThreeDPoint:
(not Point)

sayHi

z tacked on at end

CSE351, Spring 2021L27: Java and C - I

code for Point()

code for Point’s samePlace()
Point vtable:

xvptr yheader

Point object

p ???

Dynamic Dispatch

25

Point p = ???;

return p.samePlace(q);

// works regardless of what p is

return p->vtr[1](p, q);

Java: C pseudo-translation:

code for ThreeDPoint’s samePlace()

code for sayHi()

xvptr yheader

ThreeDPoint object

z

ThreeDPoint vtable:

CSE351, Spring 2021L27: Java and C - I

Ta-da!

 In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

 The “trick” in the implementation is this part:
p->vptr[i](p,q)

 In the body of the pointed-to code, any calls to (other)
methods of this will use p->vptr

 Dispatch determined by p, not the class that defined a
method

26

