
CSE351, Spring 2021L27: Java and C - I

Java and C (part I)
CSE 351 Spring 2021
Instructor: Teaching Assistants:

Ruth Anderson Allen Aby Joy Dang Alena Dickmann

Catherine Guevara Corinne Herzog Ian Hsiao

Diya Joy Jim Limprasert Armin Magness

Aman Mohammed Monty Nitschke Allie Pfleger

Mara Kirdani-Ryan Alex Saveau Sanjana Sridhar

Amy Xu

https://xkcd.com/801/

https://xkcd.com/801/

CSE351, Spring 2021L27: Java and C - I

Administrivia

 Unit Summary #3 – due TONIGHT Friday (5/28)

 Submitted by Monday 5/31 – one day late

 Submitted by Tuesday 6/01 – two days late

 hw25 – Do EARLY, will help with Lab 5 (due Tues 6/01)

 Lab 5 (on Mem Alloc) due the last day of class (6/04)

 Light style grading

 Can be submitted at most ONE day late. (Sun 6/06)

 Questions Docs: Use @uw google account to access!!

 https://tinyurl.com/CSE351-21sp-Questions

2

https://tinyurl.com/CSE351-21sp-Questions

CSE351, Spring 2021L27: Java and C - I

Lab 5 Hints

 Struct pointers can be used to access field values,
even if no struct instances have been created – just
reinterpreting the data in memory

 Pay attention to boundary tag data

 Size value + 2 tag bits – when do these need to be updated
and do they have the correct values?

 The examine_heap function follows the implicit free list
searching algorithm – don’t take its output as “truth”

 Learn to use and interpret the trace files for testing!!!

 A special heap block marks the end of the heap

3

CSE351, Spring 2021L27: Java and C - I

Roadmap

4

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2021L27: Java and C - I

Java vs. C

 Reconnecting to Java (hello CSE143!)

 But now you know a lot more about what really happens
when we execute programs

 We’ve learned about the following items in C; now
we’ll see what they look like for Java:

 Representation of data

 Pointers / references

 Casting

 Function / method calls including dynamic dispatch

5

CSE351, Spring 2021L27: Java and C - I

Worlds Colliding

 CSE351 has given you a “really different feeling”
about what computers do and how programs execute

 We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”

 It’s not – it’s just a higher-level of abstraction

 Connect these levels via how-one-could-implement-Java in
351 terms

6

CSE351, Spring 2021L27: Java and C - I

Meta-point to this lecture

 None of the data representations we are going to talk
about are guaranteed by Java

 In fact, the language simply provides an abstraction
(Java language specification)

 Tells us how code should behave for different language
constructs, but we can't easily tell how things are really
represented

 But it is important to understand an implementation of the
lower levels – useful in thinking about your program

7

CSE351, Spring 2021L27: Java and C - I

Data in Java

 Integers, floats, doubles, pointers – same as C

 “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

 Java’s portability-guarantee fixes the sizes of all types
• Example: int is 4 bytes in Java regardless of machine

 No unsigned types to avoid conversion pitfalls
• Added some useful methods in Java 8 (also use bigger signed types)

 null is typically represented as 0 but “you can’t tell”

 Much more interesting:

 Arrays

 Characters and strings

 Objects
8

CSE351, Spring 2021L27: Java and C - I

Data in Java: Arrays

 Every element initialized to 0 or null

 Length specified in immutable field at start of array (int: 4B)
 array.length returns value of this field

 Since it has this info, what can it do?

9

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351, Spring 2021L27: Java and C - I

Data in Java: Arrays

 Every element initialized to 0 or null

 Length specified in immutable field at start of array (int: 4B)
 array.length returns value of this field

 Every access triggers a bounds-check
 Code is added to ensure the index is within bounds

 Exception if out-of-bounds

10

int array[5];

Java:

C:

0 4 20

?? ?? ?? ?? ??

To speed up bounds-checking:
• Length field is likely in cache
• Compiler may store length field

in register for loops
• Compiler may prove that some

checks are redundant
5 00 00 00 00 00

0 4 20 24

int[] array = new int[5];

CSE351, Spring 2021L27: Java and C - I

Data in Java: Characters & Strings

 Two-byte Unicode instead of ASCII
 Represents most of the world’s alphabets

 String not bounded by a '\0' (null character)

 Bounded by hidden length field at beginning of string

 All String objects read-only (vs. StringBuffer)

11

Example: the string “CSE351”

43 \0

0 1 4

53 45 33 35 31

7

C:
(ASCII)

Java:
(Unicode)

16

6 43 00 53 00 45 00 33 00 35 00 31 00

0 4 8

CSE351, Spring 2021L27: Java and C - I

Data in Java: Objects

 Data structures (objects) are always stored by reference, never
stored “inline”
 Include complex data types (arrays, other objects, etc.) using references

12

C:

 a[] stored “inline” as part of
struct

struct rec {

int i;

int a[3];

struct rec *p;

};

Java:

 a stored by reference in object

class Rec {

int i;

int[] a = new int[3];

Rec p;

...

}

i a p

0 4 16 24

i a p

0 4 2012

4 16

3

0

CSE351, Spring 2021L27: Java and C - I

Pointer/reference fields and variables

 In C, we have “->” and “.” for field selection depending on
whether we have a pointer to a struct or a struct
 (*r).a is so common it becomes r->a

 In Java, all non-primitive variables are references to objects
 We always use r.a notation

 But really follow reference to r with offset to a, just like r->a in C

 So no Java field needs more than 8 bytes

13

struct rec *r = malloc(...);

struct rec r2;

r->i = val;

r->a[2] = val;

r->p = &r2;

r = new Rec();

r2 = new Rec();

r.i = val;

r.a[2] = val;

r.p = r2;

C: Java:

CSE351, Spring 2021L27: Java and C - I

Pointers/References

 Pointers in C can point to any memory address

 References in Java can only point to [the starts of] objects
 Can only be dereferenced to access a field or element of that object

14

struct rec {

int i;

int a[3];

struct rec *p;

};

struct rec* r = malloc(…);

some_fn(&(r->a[1])); // ptr

class Rec {

int i;

int[] a = new int[3];

Rec p;

}

Rec r = new Rec();

some_fn(r.a, 1); // ref, index

r r

i a p

0 4 16 24

i a p

0 4 2012

int[3]

4 16

3

0

Java:C:

CSE351, Spring 2021L27: Java and C - I

Casting in C (example from Lab 5)

 Can cast any pointer into any other pointer
 Changes dereference and arithmetic behavior

15

struct BlockInfo {

size_t sizeAndTags;

struct BlockInfo* next;

struct BlockInfo* prev;

};

typedef struct BlockInfo BlockInfo;

...

int x;

BlockInfo *b;

BlockInfo *newBlock;

...

newBlock = (BlockInfo *) ((char *) b + x);

...

Cast back into
BlockInfo * to use
as BlockInfo struct

Cast b into char * to
do unscaled addition

s n p

80 16 24

s n p

x

CSE351, Spring 2021L27: Java and C - I

Type-safe casting in Java
 Can only cast compatible object references

 Based on class hierarchy

16

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

CSE351, Spring 2021L27: Java and C - I

Vehicle v = new Vehicle(); // super class of Boat and Car

Boat b1 = new Boat(); // |--> sibling

Car c1 = new Car(); // |--> sibling

Vehicle v1 = new Car();

Vehicle v2 = v1;

Car c2 = new Boat();

Car c3 = new Vehicle();

Boat b2 = (Boat) v;

Car c4 = (Car) v2;

Car c5 = (Car) b1;

Type-safe casting in Java
 Can only cast compatible object references

 Based on class hierarchy

17

class Vehicle {

int passengers;

}

class Boat extends Vehicle {

int propellers;

}

class Car extends Vehicle {

int wheels;

}

class Object {

...

}

✓ Everything needed for Vehicle also in Car
✓ v1 is declared as type Vehicle
✗ Compiler error: Incompatible type – elements in

Car that are not in Boat (siblings)

CSE351, Spring 2021L27: Java and C - I

Java Object Definitions

19

class Point {

double x;

double y;

Point() {

x = 0;

y = 0;

}

boolean samePlace(Point p) {

return (x == p.x) && (y == p.y);

}

}

...

Point p = new Point();

...

constructor

fields

method(s)

creation

CSE351, Spring 2021L27: Java and C - I

Java Objects and Method Dispatch

 Virtual method table (vtable)
 Like a jump table for instance (“virtual”) methods plus other class info

 One table per class

 Each object instance contains a vtable pointer (vptr)

 Object header : GC info, hashing info, lock info, etc.

20

code for Point() code for samePlace()

vtable for class Point:

q

xvptr yheader

Point object

p
xvptr yheader

Point object

CSE351, Spring 2021L27: Java and C - I

Java Constructors

 When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

21

Point p = new Point(); Point* p = calloc(1,sizeof(Point));

p->header = ...;

p->vptr = &Point_vtable;

p->vptr[0](p);

Java:

code for Point() code for samePlace()

vtable for class Point:

p
xvptr yheader

Point object

C pseudo-translation:

CSE351, Spring 2021L27: Java and C - I

Java Methods

 Static methods are just like functions

 Instance methods:
 Can refer to this;
 Have an implicit first parameter for this; and
 Can be overridden in subclasses

 The code to run when calling an instance method is chosen at
runtime by lookup in the vtable

22

p.samePlace(q); p->vptr[1](p, q);

Java: C pseudo-translation:

code for Point() code for samePlace()

vtable for class Point:

p

xvptr yheader

Point object

CSE351, Spring 2021L27: Java and C - I

Subclassing

 Where does “z” go? At end of fields of Point
 Point fields are always in the same place, so Point code can run on
ThreeDPoint objects without modification

 Where does pointer to code for two new methods go?
 No constructor, so use default Point constructor

 To override “samePlace”, use same vtable position

 Add new pointer at end of vtable for new method “sayHi”

23

class ThreeDPoint extends Point {

double z;

boolean samePlace(Point p2) {

return false;

}

void sayHi() {

System.out.println("hello");

}

}

CSE351, Spring 2021L27: Java and C - I

Subclassing

24

New code for
samePlace

Old code for
constructor

sayHi tacked on at end
Code for
sayHi

class ThreeDPoint extends Point {

double z;

boolean samePlace(Point p2) {

return false;

}

void sayHi() {

System.out.println("hello");

}

}

xvptr yheader

ThreeDPoint object

z

constructor samePlacevtable for ThreeDPoint:
(not Point)

sayHi

z tacked on at end

CSE351, Spring 2021L27: Java and C - I

code for Point()

code for Point’s samePlace()
Point vtable:

xvptr yheader

Point object

p ???

Dynamic Dispatch

25

Point p = ???;

return p.samePlace(q);

// works regardless of what p is

return p->vtr[1](p, q);

Java: C pseudo-translation:

code for ThreeDPoint’s samePlace()

code for sayHi()

xvptr yheader

ThreeDPoint object

z

ThreeDPoint vtable:

CSE351, Spring 2021L27: Java and C - I

Ta-da!

 In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

 The “trick” in the implementation is this part:
p->vptr[i](p,q)

 In the body of the pointed-to code, any calls to (other)
methods of this will use p->vptr

 Dispatch determined by p, not the class that defined a
method

26

