
CSE351, Spring 2021L26: Memory Allocation III

Memory Allocation III
CSE 351 Spring 2021

Instructor:
Ruth Anderson

Teaching Assistants:
Allen Aby
Joy Dang
Alena Dickmann
Catherine Guevara
Corinne Herzog
Ian Hsiao
Diya Joy
Jim Limprasert
Armin Magness
Aman Mohammed
Monty Nitschke
Allie Pfleger
Mara Kirdani-Ryan
Alex Saveau
Sanjana Sridhar
Amy Xu

https://xkcd.com/835/

https://xkcd.com/835/

CSE351, Spring 2021L26: Memory Allocation III

Administrivia

 Unit Summary #3 – due Friday (5/28)

 Lab 5 (on Mem Alloc) due the last day of class (6/04)

 Understanding the concepts first and efficient debugging
will save you lots of time

 Light style grading

 Can be submitted at most ONE day late. (Sun 6/06)

 hw25 – Do EARLY, will help with Lab 5

 Questions Docs: Use @uw google account to access!!

 https://tinyurl.com/CSE351-21sp-Questions

2

https://tinyurl.com/CSE351-21sp-Questions

CSE351, Spring 2021L26: Memory Allocation III

Allocation Policy Tradeoffs

 Data structure of blocks on lists

 Implicit (free/allocated), explicit (free), segregated (many
free lists) – others possible!

 Placement policy: first-fit, next-fit, best-fit

 Throughput vs. amount of fragmentation

 When do we split free blocks?

 How much internal fragmentation are we willing to tolerate?

 When do we coalesce free blocks?
 Immediate coalescing: Every time free is called

 Deferred coalescing: Defer coalescing until needed
• e.g. when scanning free list for malloc or when external

fragmentation reaches some threshold
3

CSE351, Spring 2021L26: Memory Allocation III

More Info on Allocators

 D. Knuth, “The Art of Computer Programming”, 2nd

edition, Addison Wesley, 1973

 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.

 Comprehensive survey

 Available from CS:APP student site (csapp.cs.cmu.edu)

4

CSE351, Spring 2021L26: Memory Allocation III

Memory Allocation

 Dynamic memory allocation

 Introduction and goals

 Allocation and deallocation (free)

 Fragmentation

 Explicit allocation implementation

 Implicit free lists

 Explicit free lists (Lab 5)

 Segregated free lists

 Implicit deallocation: garbage collection

 Common memory-related bugs in C

5

CSE351, Spring 2021L26: Memory Allocation III

Reading Review

 Terminology:

 Garbage collection: mark-and-sweep

 Memory-related issues in C

6

CSE351, Spring 2021L26: Memory Allocation III

Wouldn’t it be nice…

 If we never had to free memory?

 Do you free objects in Java?

 Reminder: implicit allocator

7

CSE351, Spring 2021L26: Memory Allocation III

Garbage Collection (GC)

 Garbage collection: automatic reclamation of heap-allocated
storage – application never explicitly frees memory

 Common in implementations of functional languages, scripting
languages, and modern object oriented languages:
 Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,

JavaScript, Dart, Mathematica, MATLAB, many more…

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

8

void foo() {

int* p = (int*) malloc(128);

return; /* p block is now garbage! */

}

(Automatic Memory Management)

CSE351, Spring 2021L26: Memory Allocation III

Garbage Collection

 How does the memory allocator know when memory
can be freed?

 In general, we cannot know what is going to be used in the
future since it depends on conditionals

 But, we can tell that certain blocks cannot be used if they
are unreachable (via pointers in registers/stack/globals)

 Memory allocator needs to know what is a pointer
and what is not – how can it do this?

 Sometimes with help from the compiler

9

CSE351, Spring 2021L26: Memory Allocation III

Memory as a Graph

 We view memory as a directed graph
 Each allocated heap block is a node in the graph

 Each pointer is an edge in the graph

 Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, stack locations, global variables)

10

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

Root nodes

Heap nodes

not reachable
(garbage)

reachable

CSE351, Spring 2021L26: Memory Allocation III

Garbage Collection

 Dynamic memory allocator can free blocks if there are
no pointers to them

 How can it know what is a pointer and what is not?

 We’ll make some assumptions about pointers:

 Memory allocator can distinguish pointers from non-
pointers

 All pointers point to the start of a block in the heap

 Application cannot hide pointers
(e.g. by coercing them to a long, and then back again)

11

CSE351, Spring 2021L26: Memory Allocation III

Classical GC Algorithms

 Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

 Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

 Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

 Generational Collectors (Lieberman and Hewitt, 1983)

 Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.

 For more information:
 Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of

Automatic Memory Management, CRC Press, 2012.

 Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic
Memory, John Wiley & Sons, 1996.

12

CSE351, Spring 2021L26: Memory Allocation III

Mark and Sweep Collecting

 Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

 When out of space:
 Use extra mark bit in the header of each block

 Mark: Start at roots and set mark bit on each reachable block

 Sweep: Scan all blocks and free blocks that are not marked

13

Before mark

root

After mark Mark bit set

After sweep freefree

Arrows are NOT
free list pointers

CSE351, Spring 2021L26: Memory Allocation III

Assumptions For a Simple Implementation

 Application can use functions to allocate memory:
 b=new(n) returns pointer, b, to new block with all locations cleared

 b[i] read location i of block b into register

 b[i]=v write v into location i of block b

 Each block will have a header word (accessed at b[-1])

 Functions used by the garbage collector:
 is_ptr(p) determines whether p is a pointer to a block

 length(p) returns length of block pointed to by p, not including
header

 get_roots() returns all the roots

14

Non-testable
Material

CSE351, Spring 2021L26: Memory Allocation III

Mark

 Mark using depth-first traversal of the memory graph

15

ptr mark(ptr p) { // p: some word in a heap block

if (!is_ptr(p)) return; // do nothing if not pointer

if (markBitSet(p)) return; // check if already marked

setMarkBit(p); // set the mark bit

for (i=0; i<length(p); i++) // recursively call mark on

mark(p[i]); // all words in the block

return;

}

Before mark

root

After mark Mark bit set

Non-testable
Material

CSE351, Spring 2021L26: Memory Allocation III

Sweep

 Sweep using sizes in headers

16

ptr sweep(ptr p, ptr end) { // ptrs to start & end of heap

while (p < end) { // while not at end of heap

if (markBitSet(p)) // check if block is marked

clearMarkBit(p); // if so, reset mark bit

else if (allocateBitSet(p)) // if not marked, but allocated

free(p); // free the block

p += length(p); // adjust pointer to next block

}

}

Non-testable
Material

After mark Mark bit set

After sweep freefree

CSE351, Spring 2021L26: Memory Allocation III

Conservative Mark & Sweep in C

 Would mark & sweep work in C?
 is_ptr determines if a word is a pointer by checking if it points to an

allocated block of memory

 But in C, pointers can point into the middle of allocated blocks
(not so in Java)

• Makes it tricky to find all allocated blocks in mark phase

 There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:

• Every reachable node correctly identified as reachable, but some unreachable
nodes might be incorrectly marked as reachable

 In Java, all pointers (i.e. references) point to the starting address of an
object structure – the start of an allocated block

17

header

ptr

Non-testable
Material

CSE351, Spring 2021L26: Memory Allocation III

Memory-Related Perils and Pitfalls in C

18

Slide
Program stop

possible? Fixes:

A) Dereferencing a non-pointer

B) Freed block – access again

C) Freed block – free again

D) Memory leak – failing to free memory

E) No bounds checking

F) Reading uninitialized memory

G) Referencing nonexistent variable

H) Wrong allocation size

CSE351, Spring 2021L26: Memory Allocation III

Q1: Find That Bug! (Slide 19)

19

char s[8];

int i;

gets(s); /* reads "123456789" from stdin */

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2021L26: Memory Allocation III

Q2: Find That Bug! (Slide 20)

20

int* foo() {

int val = 0;

return &val;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2021L26: Memory Allocation III

Q3: Find That Bug! (Slide 21)

• N and M defined elsewhere (#define)

21

int** p;

p = (int**)malloc(N * sizeof(int));

for (int i = 0; i < N; i++) {

p[i] = (int*)malloc(M * sizeof(int));

}

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2021L26: Memory Allocation III

Q4: Find That Bug! (Slide 22)

• A is NxN matrix, x is N-sized vector (so product is vector of size N)

• N defined elsewhere (#define)

22

/* return y = Ax */

int* matvec(int** A, int* x) {

int* y = (int*)malloc(N*sizeof(int));

int i, j;

for (i = 0; i < N; i++)

for (j = 0; j < N; j++)

y[i] += A[i][j] * x[j];

return y;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2021L26: Memory Allocation III

Q5: Find That Bug! (Slide 23)

 The classic scanf bug
 int scanf(const char *format, ...)

23

int val;

...

scanf("%d", val);

Error Prog stop Fix:
Type: Possible?

See: http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

http://www.cplusplus.com/reference/cstdio/scanf/?kw=scanf

CSE351, Spring 2021L26: Memory Allocation III

Q6: Find That Bug! (Slide 24)

24

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));

// manipulate y

free(x);

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2021L26: Memory Allocation III

Q7: Find That Bug! (Slide 25)

25

x = (int*)malloc(N * sizeof(int));

// manipulate x

free(x);

...

y = (int*)malloc(M * sizeof(int));

for (i=0; i<M; i++)

y[i] = x[i]++;

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2021L26: Memory Allocation III

(Not in Ed) Find That Bug! (Slide 26)

26

typedef struct L {

int val;

struct L *next;

} list;

void foo() {

list *head = (list *) malloc(sizeof(list));

head->val = 0;

head->next = NULL;

// create and manipulate the rest of the list

...

free(head);

return;

}

Error Prog stop Fix:
Type: Possible?

CSE351, Spring 2021L26: Memory Allocation III

Dealing With Memory Bugs

 Conventional debugger (gdb)
 Good for finding bad pointer dereferences

 Hard to detect the other memory bugs

 Debugging malloc (UToronto CSRI malloc)
 Wrapper around conventional malloc

 Detects memory bugs at malloc and free boundaries
• Memory overwrites that corrupt heap structures

• Some instances of freeing blocks multiple times

• Memory leaks

 Cannot detect all memory bugs
• Overwrites into the middle of allocated blocks

• Freeing block twice that has been reallocated in the interim

• Referencing freed blocks

27

Non-testable
Material

CSE351, Spring 2021L26: Memory Allocation III

Dealing With Memory Bugs (cont.)

 Some malloc implementations contain checking
code
 Linux glibc malloc: setenv MALLOC_CHECK_ 2

 FreeBSD: setenv MALLOC_OPTIONS AJR

 Binary translator: valgrind (Linux), Purify

 Powerful debugging and analysis technique

 Rewrites text section of executable object file

 Can detect all errors as debugging malloc

 Can also check each individual reference at runtime

• Bad pointers

• Overwriting

• Referencing outside of allocated block
28

Non-testable
Material

CSE351, Spring 2021L26: Memory Allocation III

What about Java or ML or Python or …?

 In memory-safe languages, most of these bugs are
impossible

 Cannot perform arbitrary pointer manipulation

 Cannot get around the type system

 Array bounds checking, null pointer checking

 Automatic memory management

 But one of the bugs we saw earlier is possible. Which
one?

29

Non-testable
Material

CSE351, Spring 2021L26: Memory Allocation III

Memory Leaks with GC

 Not because of forgotten free — we have GC!

 Unneeded “leftover” roots keep objects reachable

 Sometimes nullifying a variable is not needed for correctness
but is for performance

 Example: Don’t leave big data structures you’re done with in a
static field

30

Root nodes

Heap nodes

not reachable
(garbage)

reachable

