
CSE351, Spring 2021L24: Memory Allocation I

Memory Allocation I
CSE 351 Spring 2021

Instructor:
Ruth Anderson

Teaching Assistants:
Allen Aby
Joy Dang
Alena Dickmann
Catherine Guevara
Corinne Herzog
Ian Hsiao
Diya Joy
Jim Limprasert
Armin Magness
Aman Mohammed
Monty Nitschke
Allie Pfleger
Mara Kirdani-Ryan
Alex Saveau
Sanjana Sridhar
Amy Xu

Adapted from
https://xkcd.com/1093/

https://xkcd.com/627/

CSE351, Spring 2021L24: Memory Allocation I

Administrivia

 hw21 due TONIGHT Friday (5/21)

 Lab 4 due Friday (5/21)

 Cache parameter puzzles and code optimizations

 Lab 5 (on Mem Alloc) coming soon!

 Will want to look at readings for next week to get started

 Can be submitted at most ONE day late. (Sun 6/06)

 Questions Docs: Use @uw google account to access!!

 https://tinyurl.com/CSE351-21sp-Questions

2

https://tinyurl.com/CSE351-21sp-Questions

CSE351, Spring 2021L24: Memory Allocation I

Roadmap

3

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2021L24: Memory Allocation I

Reading Review

 Terminology:

 Dynamically-allocated data: malloc, free

 Allocators: implicit vs. explicit allocators, heap blocks,
implicit vs. explicit free lists

 Heap fragmentation: internal vs. external

4

CSE351, Spring 2021L24: Memory Allocation I

Multiple Ways to Store Program Data

 Static global data
 Fixed size at compile-time

 Entire lifetime of the program
(loaded from executable)

 Portion is read-only
(e.g. string literals)

 Stack-allocated data
 Local/temporary variables

• Can be dynamically sized (in some versions of C)

 Known lifetime (deallocated on return)

 Dynamic (heap) data
 Size known only at runtime (i.e. based on user-input)

 Lifetime known only at runtime (long-lived data structures)

5

int array[1024];

int* foo(int n) {

int tmp;

int local_array[n];

int* dyn =

(int*)malloc(n*sizeof(int));

return dyn;

}

CSE351, Spring 2021L24: Memory Allocation I

Memory Allocation

 Dynamic memory allocation

 Introduction and goals

 Allocation and deallocation (free)

 Fragmentation

 Explicit allocation implementation

 Implicit free lists

 Explicit free lists (Lab 5)

 Segregated free lists

 Implicit deallocation: garbage collection

 Common memory-related bugs in C

6

CSE351, Spring 2021L24: Memory Allocation I

Dynamic Memory Allocators

 Programmers use dynamic memory allocators to
acquire virtual memory at run time

 For data structures whose size
(or lifetime) is known only at runtime

 Manage the heap of a process’
virtual memory:

 Types of allocators

 Explicit allocator: programmer allocates and frees space
• Example: malloc and free in C

 Implicit allocator: programmer only allocates space (no free)
• Example: garbage collection in Java, Caml, and Lisp

7

Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351, Spring 2021L24: Memory Allocation I

Dynamic Memory Allocation

 Allocator organizes heap as a collection of variable-
sized blocks, which are either allocated or free

 Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

 Application objects are typically smaller than pages, so the
allocator manages blocks within pages
• (Larger objects handled too;

ignored here)

8

Top of heap
(brk ptr)

Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

CSE351, Spring 2021L24: Memory Allocation I

Allocating Memory in C

 Need to #include <stdlib.h>

 void* malloc(size_t size)

 Allocates a continuous block of size bytes of uninitialized memory

 Returns a pointer to the beginning of the allocated block; NULL indicates
failed request

• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• Returns NULL if allocation failed (also sets errno) or size==0

 Different blocks not necessarily adjacent

 Good practices:
 ptr = (int*) malloc(n*sizeof(int));

• sizeof makes code more portable

• void* is implicitly cast into any pointer type; explicit typecast will help you
catch coding errors when pointer types don’t match

9

CSE351, Spring 2021L24: Memory Allocation I

Allocating Memory in C

 Need to #include <stdlib.h>

 void* malloc(size_t size)

 Allocates a continuous block of size bytes of uninitialized memory

 Returns a pointer to the beginning of the allocated block; NULL indicates
failed request

• Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

• Returns NULL if allocation failed (also sets errno) or size==0

 Different blocks not necessarily adjacent

 Related functions:
 void* calloc(size_t nitems, size_t size)

• “Zeros out” allocated block

 void* realloc(void* ptr, size_t size)

• Changes the size of a previously allocated block (if possible)

 void* sbrk(intptr_t increment)

• Used internally by allocators to grow or shrink the heap
10

CSE351, Spring 2021L24: Memory Allocation I

Freeing Memory in C

 Need to #include <stdlib.h>

 void free(void* p)

 Releases whole block pointed to by p to the pool of available memory

 Pointer p must be the address originally returned by m/c/realloc
(i.e. beginning of the block), otherwise system exception raised

 Don’t call free on a block that has already been released

11

CSE351, Spring 2021L24: Memory Allocation I

Memory Allocation Example in C

12

void foo(int n, int m) {

int i, *p;

p = (int*) malloc(n*sizeof(int)); /* allocate block of n ints */

if (p == NULL) { /* check for allocation error */

perror("malloc");

exit(0);

}

for (i=0; i<n; i++) /* initialize int array */

p[i] = i;

/* add space for m ints to end of p block */

p = (int*) realloc(p,(n+m)*sizeof(int));

if (p == NULL) { /* check for allocation error */

perror("realloc");

exit(0);

}

for (i=n; i < n+m; i++) /* initialize new spaces */

p[i] = i;

for (i=0; i<n+m; i++) /* print new array */

printf("%d\n", p[i]);

free(p); /* free p */
}

CSE351, Spring 2021L24: Memory Allocation I

Notation

 We will draw memory divided into words

 Each word is 64 bits = 8 bytes

 Allocations will be in sizes that are a multiple of words
(i.e. multiples of 8 bytes)

 Book and old videos still use 4-byte word
• Holdover from 32-bit version of textbook 🙁

13

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

= 1 word = 8 bytes

CSE351, Spring 2021L24: Memory Allocation I

Allocation Example

14

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(16)

= 8-byte word

CSE351, Spring 2021L24: Memory Allocation I

Implementation Interface

 Applications
 Can issue arbitrary sequence of malloc and free requests

 Must never access memory not currently allocated

 Must never free memory not currently allocated
• Also must only use free with previously malloc’ed blocks

 Allocators

 Can’t control number or size of allocated blocks

 Must respond immediately to malloc

 Must allocate blocks from free memory

 Must align blocks so they satisfy all alignment requirements

 Can’t move the allocated blocks
15

CSE351, Spring 2021L24: Memory Allocation I

Performance Goals

 Goals: Given some sequence of malloc and free
requests 𝑅0, 𝑅1, … , 𝑅𝑘 , … , 𝑅𝑛−1, maximize throughput
and peak memory utilization

 These goals are often conflicting

1) Throughput

 Number of completed requests per unit time

 Example:
• If 5,000 malloc calls and 5,000 free calls completed in 10 seconds,

then throughput is 1,000 operations/second

16

CSE351, Spring 2021L24: Memory Allocation I

Performance Goals

 Definition: Aggregate payload 𝑃𝑘
 malloc(p) results in a block with a payload of p bytes

 After request 𝑅𝑘 has completed, the aggregate payload 𝑃𝑘
is the sum of currently allocated payloads

 Definition: Current heap size 𝐻𝑘
 Assume 𝐻𝑘 is monotonically non-decreasing

• Allocator can increase size of heap using sbrk

2) Peak Memory Utilization

 Defined as 𝑈𝑘 = (max
𝑖≤𝑘

𝑃𝑖)/𝐻𝑘 after 𝑘+1 requests

 Goal: maximize utilization for a sequence of requests

 Why is this hard? And what happens to throughput?
17

CSE351, Spring 2021L24: Memory Allocation I

Fragmentation

 Poor memory utilization is caused by fragmentation

 Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

 Two types: internal and external

 Recall: Fragmentation in structs
 Internal fragmentation was wasted space inside of the struct

(between fields) due to alignment

 External fragmentation was wasted space between struct
instances (e.g. in an array) due to alignment

 Now referring to wasted space in the heap inside or
between allocated blocks

18

CSE351, Spring 2021L24: Memory Allocation I

Internal Fragmentation

 For a given block, internal fragmentation occurs if
payload is smaller than the block

 Causes:
 Padding for alignment purposes

 Overhead of maintaining heap data structures (inside block,
outside payload)

 Explicit policy decisions (e.g. return a big block to satisfy a
small request)

 Easy to measure because only depends on past
requests

19

payload
Internal
fragmentation

block

Internal
fragmentation

CSE351, Spring 2021L24: Memory Allocation I

External Fragmentation

 For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
 That is, the aggregate payload is non-continuous

 Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough

 Don’t know what future requests will be
 Difficult to impossible to know if past placements will become

problematic
20

p1 = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

free(p2)

p4 = malloc(48) Oh no! (What would happen now?)

= 8-byte word

CSE351, Spring 2021L24: Memory Allocation I

Polling Question

 Which of the following statements is FALSE?

 Vote in Ed Lessons

A. Temporary arrays should not be allocated on the
Heap

B. malloc returns an address of a block that is
filled with garbage

C. Peak memory utilization is a measure of both
internal and external fragmentation

D. An allocation failure will cause your program to
stop

E. We’re lost…
21

CSE351, Spring 2021L24: Memory Allocation I

Implementation Issues

 How do we know how much memory to free given
just a pointer?

 How do we keep track of the free blocks?

 How do we pick a block to use for allocation (when
many might fit)?

 What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

 How do we reinsert a freed block into the heap?

22

CSE351, Spring 2021L24: Memory Allocation I

Knowing How Much to Free

 Standard method

 Keep the length of a block in the word preceding the data
• This word is often called the header field or header

 Requires an extra word for every allocated block

23

free(p0)

p0 = malloc(32)

p0

block size data

40

= 8-byte word (free)

= 8-byte word (allocated)

CSE351, Spring 2021L24: Memory Allocation I

Keeping Track of Free Blocks

1) Implicit free list using length – links all blocks using math
 No actual pointers, and must check each block if allocated or free

2) Explicit free list among only the free blocks, using pointers

3) Segregated free list
 Different free lists for different size “classes”

4) Blocks sorted by size
 Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
24

40 32 1648

40 32 1648

= 8-byte word (free)

= 8-byte word (allocated)

CSE351, Spring 2021L24: Memory Allocation I

Implicit Free Lists

 For each block we need: size, is-allocated?

 Could store using two words, but wasteful

 Standard trick
 If blocks are aligned, some low-order bits of size are always 0

 Use lowest bit as an allocated/free flag (fine as long as aligning to 𝐾>1)

 When reading size, must remember to mask out this bit!

25

Format of
allocated and

free blocks:

a = 1: allocated block
a = 0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

size

8 bytes

payload

a

optional
padding

e.g. with 8-byte alignment,
possible values for size:

00001000 = 8 bytes
00010000 = 16 bytes
00011000 = 24 bytes
. . .

If x is first word (header):

x = size | a;

a = x & 1;

size = x & ~1;

size | a;

x & 1;

x & ~1;

CSE351, Spring 2021L24: Memory Allocation I

Header Questions

 How many “flags” can we fit in our header if our
allocator uses 16-byte alignment?

 If we placed a new “flag” in the second least
significant bit, write out a C expression that will
extract this new flag from header

26

