YW UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Memory, Data, & Addressing |

CSE 351 Spring 2021

Instructor:
Ruth Anderson

Teaching Assistants:
Allen Aby

Joy Dang

Alena Dickmann
Catherine Guevara
Corinne Herzog
lan Hsiao

Diya Joy

Jim Limprasert
Armin Magness
Aman Mohammed
Monty Nitschke
Allie Pfleger

Neil Ryan

Alex Saveau
Sanjana Sridhar
Amy Xu

ON A SCALE OF 1Tb 10,
HOW LIKELY 1S IT THAT
THIS QUESTION 1S
USING BINARY?

{ 47
wﬂ;r‘s AY?)

http://xkcd.com/953/

CSE351, Spring 2021

http://xkcd.com/953/

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Administrivia
Pre-Course Survey and hwO due tonight @ 11:59 pm

hw1l due Friday (4/02) @ 11:59 pm
Lab O due Monday (4/05) @ 11:59 pm

= This lab is exploratory and looks like a hw; the other labs will look a lot
different (involve writing code etc.)

= Don’t worry if everything in Lab 0 doesn’t make perfect sense right now!
We will cover all of these topics in more detail later in the course.

= Lab 0 is about getting you used to modifying C code and running it to see
what the outcome is — a powerful tool for understanding the concepts in
this course!

Readings should be completed by 11am on day of lecture

Lecture activities should be completed by 11am of NEXT
lecture

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Questions During Lecture

» Asking too many questions in chat window during lecture is
very distracting to some students

While | am lecturing

" |f you need to ask a question about content, please use the Google doc

= Staff will answer your questions in the Google doc during lecture

= We will reserve the chat window for short logistical questions (e.g.
“which slide deck?”, “We can’t see your screen”)

When | explicitly pause to take questions - Use chat window to
type your guestion, or speak

» We will not be saving the chat window. We WILL be saving,
and anonymizing the Google doc and sharing with the class.

» You must log on with your @uw google account to access!!

" https://tinyurl.com/CSE351-21sp-Questions
= Openthe TODAY's Lecture Questions doc for 11:30/2:30

https://tinyurl.com/CSE351-21sp-Questions

YA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

C: Java: Memory & data
car *c = malloc(sizeof (car)); Car ¢ = new Car(); Integers & floats
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17) ; Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly c;;et_mpc_l;1] Processes
. pushqg srbp .
language: movq srsp, Brbp Virtual memory
- Memory allocation
popgq srbp Javavs. C
ret I
\ 4
Machine 0111010000011000
de: 100011010000010000000010
Code. 1000100111000010
110000011111101000011111

Computer
system:

YA UNIVERSITY of WASHINGTON L02: Memory & Data |

CSE351, Spring 2021

Memory, Data, and Addressing

+ Hardware - High Level Overview
+» Representing information as bits and bytes
" Memory is a byte-addressable array
" Machine “word” size = address size = register size
+ Organizing and addressing data in memory
" Endianness — ordering bytes in memory
+» Manipulating data in memory using C

+» Boolean algebra and bit-level manipulations

CSE351, Spring 2021

YA UNIVERSITY of WASHINGTON L02: Memory & Data |

Hardware: Physical View

.\OQ% U S B X
(’}' PCl-Express Slots
(\Q/ 1 PCI-E X16, 2 PCI-E X1 Back Panel Connectors
|
(,OQ PCI Sots
S
QX CPU
(empty slot)
Socket 775
Core2 Quad/
Core2 Extreme
Ready
intel P45
Chipset
Intel ICH10
I/ O Chipset § 23 : DDR2
? 4 " ¢ 1066+MHz
controller & : x — Dual Channel
1 : %2R > s 12 Memory Slots
Serial ATA :
Headers ~ Loy Memory

Storage connections

YA UNIVERSITY of WASHINGTON

LO2: Memory & Data |

Hardware: Logical View

CPU

Bus

USB

Etc.

CSE351, Spring 2021

YA UNIVERSITY of WASHINGTON L02: Memory & Data |

Hardware: 351 View (version 0)

4)

LP Y

CSE351, Spring 2021

« The CPU executes instructions

+» Memory stores data

+ Binary encoding!

" |nstructions are just data

How are data
and instructions
represented?

~

)

YA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Hardware: 351 View (version 0)

/ instructions

data

&P Y,
+» To execute an instruction, the CPU must:

1) Fetch the instruction

2) (if applicable) Fetch data needed by the instruction
3) Perform the specified computation

4) (if applicable) Write the result back to memory

YA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Hardware: 351 View (version 1)

instructions

i-cache

take 469

\C P U registers/

«» More CPU details:

" |nstructions are held temporarily in the instruction cache

® Other data are held temporarily in registers
+ Instruction fetching is hardware-controlled
» Data movement is programmer-controlled (assembly)

YA UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Hardware: 351 View (version 1)

instructions

i-cache

take 469

+» We will start by learning about Memory

—L

How does a
program find its
' ?
\data in memory?

11

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Review Questions

+ By looking at the bits stored in memory, | can tell
what a particular 4 bytes is being used to represent.

A. B. False

+» We can fetch a piece of data from memory as long as
we have its address.

A. B. False

+» Which of the following bytes have a most-significant
bit (MSB) of 17

A. B. 0x90 C. OxCA D. OxF

12

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Binary Encoding Additional Details

+ Because storage is finite in reality, everything is
stored as “fixed” length
= Data is moved and manipulated in fixed-length chunks
= Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)

" Leading zeros now must be included up to “fill out” the fixed
length

+» Example: the “eight-bit” representation of the
number 4 is 0b00000100

Least Significant Bit (LSB)
Most Significant Bit (MSB)

13

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

An Address Refers to a Byte of Memory
S & &
S S

« Conceptually, memory is a single, large array of bytes,
each with a unique address (index)

= Each address is just a number represented in fixed-length binary

+ Programs refer to bytes in memory by their addresses
= Domain of possible addresses = address space

" \We can store addresses as data to “remember” where other data is in
memory

+ But not all values fit in a single byte... (e.g. 351)

= Many operations actually use multi-byte values
14

CSE351, Spring 2021

YA UNIVERSITY of WASHINGTON L02: Memory & Data |

Machine “Words”

+ Instructions encoded into machine code (0’s and 1’s)

= Hijstorically (still true in some assembly languages), all
instructions were exactly the size of a word

+» We have chosen to tie word size to address size/width

= word size = address size = register size
= word size = w bits = 2% addresses

% Current x86 systems use 64-bit (8-byte) words

= Potential address space: 264 addresses
254 bytes ~ 1.8 x 10'° bytes
= 18 billion billion bytes = 18 EB (exabytes)

= Actual physical address space: 48 bits

15

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Data Representations

+ Sizes of data types (in bytes)

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4
long int 4 8
double double 8 8
long long long 8 8
long double 8 16
(reference) pointer * 4 §\
/

[address size = word size]

To use “bool” in C, you must #include <stdbool.h> 16

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Address of Multibyte Data

. _ 64-bit 32-bit Bytes ddr.
» Addresses still specify data data y (hex)
locations of bytes in memory, 0x00
but we can choose to view Ao 0x01
memory as a series of chunks |, 2200 0x02
of fixed-sized data instead - 0x03
0000 0x04
= Addresses of successive chunks A{dr 0x05
differ by data size 0004 0x06
= Which byte’s address should we Ox07
use for each word? 0Ox08
Addr OX09

» The address of any chunk of =
.. 0008 Ox0A
memory is given by the address| Addr OxOB
of the first byte 0008 0x0C
= To specify a chunk of memory, Adzdr Ox0D
need both its address and its size 0012 OxOE

OxOF

YA UNIVERSITY of WASHINGTON L02: Memory & Data |

Alignment

» The address of a chunk of
memory is considered aligned
if its address is a multiple of its
size
= View memory as a series of

consecutive chunks of this

particular size and see if your
chunk doesn’t cross a boundary

64-bit
data

Addr

0000

32-bit
data

Addr

0000

Bytes

Addr

0008

Addr

0004

Addr

0008

Addr

0012

Addr.
(hex)

0x00
0x01
0x02
Ox03
0x04
0x05
0Ox06
0x07
0Ox08
0x09
Ox0A
Ox0B
Ox0C
Ox0D
OxOE
OxOF

CSE351, Spring 2021

18

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

A Picture of Memory (64-bit view)

« A “64-bit (8-byte) word-aligned” view of memory:

" |n this type of picture, each row is composed of 8 bytes

= Each cell is a byte one Word
|

" An aligned, 64-bit : \
Chunk Of data WI” Address Ox’OO Ox’01 Ox’OZ Ox’03 Ox’04 Ox’05 Ox’06 Ox’07
fit on one row oxo0 ¥ % ¥ ¥ PV P Y

Ox08 |
0x10 |
0x18 |

0x20 i

Ox28
0x30
Ox38
0x40
Ox48

19

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

A Picture of Memory (64-bit view)

« A “64-bit (8-byte) word-aligned” view of memory:

" |n this type of picture, each row is composed of 8 bytes
= Each cell is a byte

one word
= An aligned, 64-bit ! : \
Chunk Of data W|” Address OX’OO 0)(’01 OX’OZ 0)(’03 0)(’04 0)(’05 0)(’06 0)(’07
: Ox00 | ¥ 1 ¥i ¥1 ¥ ¥ ¥ ¥ ¥
fit on one row —_—
OxO8 | » | n! K! NI N} K! K} N
Ox10 | 0x08 0x09 0x0A 0x0B 0x0C 0xOD OXOE OxgF
0x18 R
0x20 I R R S N
0x28 I R N R R
0x30 I R N S N
0x38 R N R R N R
x40 |1 1 1 1 1 1
Ox48 I R R N R

20

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

[64-bit example J
()

pointers are 64-bits wide

Addresses and Pointers

big-endian
« An address refers to a location in memory
+» A pointeris a data object that holds an address

= Address can point to any data

« Value 504 stored at

Address

address 0x08 0x00
= 504,,=1F8,, 8)(%

_ X
=0x00...0001F8 0x18
« Pointer stored at 0x20
Ox38 points to Ox28
0Ox30
address 0x08 0x38
0x40

0x48

21

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

[64-bit example J
()

pointers are 64-bits wide

Addresses and Pointers

big-endian

« An address refers to a location in memory

+» A pointeris a data object that holds an address
= Address can point to any data

« Pointer stored at

. Address
0x48 points to 0x00 1
address 0x38 8“;3 00 00,0001 ;F8
X : : :
" Pointer to a pointer! (5,13 L1 b
» Isthe data stored ~ 0x20
, O0x28 R
at Ox08 a pointer? 430 | T
= Could be, depending gxig 00 ?00:00:00: 08
. X ! . ! ! ! :
onhowyouuseit o 1c [50100100 00400 00,0038

22

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Byte Ordering

+» How should bytes within a word be ordered in
memory?

= Want to keep consecutive bytes in consecutive addresses
= Example: store the 4-byte (32-bit) int:
Ox al b2 c3 d4

4

» By convention, ordering of bytes called endianness
" The two options are big-endian and little-endian

- In which address does the least significant byte go?

- Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

23

YA UNIVERSITY of WASHINGTON L02: Memory & Data |

Byte Ordering

CSE351, Spring 2021

+ Big-endian (SPARC, z/Architecture)
= |east significant byte has highest address

+ Little-endian (x86, x86-64)

= Least significant byte has lowest address

+» Bi-endian (ARM, PowerPC)

" Endianness can be specified as big or little

+» Example: 4-byte data Oxal

0x100

n2c3d4 at address 0x100

0x101

0x102 Ox103

Big-Endian

0x100

0x101

0x102 Ox103

Little-Endian

24

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Byte Ordering

+ Big-endian (SPARC, z/Architecture)

= |east significant byte has highest address
+ Little-endian (x86, x86-64)

= Least significant byte has lowest address
+» Bi-endian (ARM, PowerPC)

" Endianness can be specified as big or little

+~ Example: 4-byte data Oxalb2c3d4 at address 0x100

0x100 0x101 0x102 0Ox103
Big-Endian al | b2 | c3 | d4

0x100 0x101 0x102 0x103
Little-Endian d4 | c3 b2 | al

25

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Decimal: 12345
0011 0000 0011 1001

Byte Ordering Examples |, 5 ™" ",

IA32, x86-64 SPARC
(little-endian) (big-endian)
int x = 12345; 0x00 0x00
// or x = 0x3039; 0x01 0x01
0x02 0x02
0x03 0x03
32-bit 64-bit 32-bit 64-bit
long int y = 12345; |1A32 x86-64 SPARC SPARC
// or v = 0x3039; O0x00] 39 = 39 | 0x00 oxo0| 00 00 |0x00
0x01] 30 | 30 | 0x01 oxo01l 00 00 [0x01
0x02] 00 l—| 00 | 0x02 ox02| 30 00 [0x02
0x03] 00 | 00 | 0x03 ox03| 39 00 [0x03
(A long intis 00 | 0x04 00 |0x04
: 00 | oxos5 00 |Ox05
the size of a word) 90 1 0x06 20005
00 | oxo7 39 | 0x07

26

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Polling Question

«» We store the value 0x 01 02 03 04 as a word at
address 0x100 in a big-endian, 64-bit machine

« What is the byte of data stored at address 0x104?
= Vote in Ed Lessons

0x40
0x01
. 0x10
We're lost...

m o 0O W >

27

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Endianness

4

Endianness only applies to memory storage

Often programmer can ignore endianness because it
is handled for you

" Bytes wired into correct place when reading or storing from
memory (hardware)

" Compiler and assembler generate correct behavior (software)
Endianness still shows up:

" Logical issues: accessing different amount of data than how
you stored it (e.g. store int, access byte as a char)

" Need to know exact values to debug memory errors
= Manual translation to and from machine code (in 351)

28

CSE351, Spring 2021

YA UNIVERSITY of WASHINGTON L02: Memory & Data |

Challenge Question

+» Assume the state of memory is as shown below for a
little-endian machine.

0x100 0x107
OF | 23 | B7 | C8 | 55| DO | 00| 04|08

+ |f we (1) read the value of an 1nt at address 0x102,
(2) add 8 to it, and then (3) store the new value as an
1nt at address 0x104, which of the following
addresses retain their original value?

A. B. 0x104 C. 0x105 D. 0x107

29

YW UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Spring 2021

Summary

«» Memory is a long, byte-addressed array
" Word size bounds the size of the address space and memory
= Different data types use different number of bytes

= Address of chunk of memory given by address of lowest byte
in chunk

"= Object of K bytes is aligned if it has an address that is a
multiple of K

+» Pointers are data objects that hold addresses

+» Endianness determines memory storage order for
multi-byte data

30

