
CSE351, Spring 2021L02: Memory & Data I

Memory, Data, & Addressing I
CSE 351 Spring 2021

http://xkcd.com/953/

Instructor:
Ruth Anderson

Teaching Assistants:
Allen Aby
Joy Dang
Alena Dickmann
Catherine Guevara
Corinne Herzog
Ian Hsiao
Diya Joy
Jim Limprasert
Armin Magness
Aman Mohammed
Monty Nitschke
Allie Pfleger
Neil Ryan
Alex Saveau
Sanjana Sridhar
Amy Xu

http://xkcd.com/953/

CSE351, Spring 2021L02: Memory & Data I

Administrivia
 Pre-Course Survey and hw0 due tonight @ 11:59 pm

 hw1 due Friday (4/02) @ 11:59 pm

 Lab 0 due Monday (4/05) @ 11:59 pm
 This lab is exploratory and looks like a hw; the other labs will look a lot

different (involve writing code etc.)

 Don’t worry if everything in Lab 0 doesn’t make perfect sense right now!
We will cover all of these topics in more detail later in the course.

 Lab 0 is about getting you used to modifying C code and running it to see
what the outcome is – a powerful tool for understanding the concepts in
this course!

 Readings should be completed by 11am on day of lecture

 Lecture activities should be completed by 11am of NEXT
lecture

2

CSE351, Spring 2021L02: Memory & Data I

Questions During Lecture
 Asking too many questions in chat window during lecture is

very distracting to some students

 While I am lecturing
 If you need to ask a question about content, please use the Google doc

 Staff will answer your questions in the Google doc during lecture

 We will reserve the chat window for short logistical questions (e.g.
“which slide deck?”, “We can’t see your screen”)

 When I explicitly pause to take questions - Use chat window to

type your question, or speak

 We will not be saving the chat window. We WILL be saving,
and anonymizing the Google doc and sharing with the class.

 You must log on with your @uw google account to access!!

 https://tinyurl.com/CSE351-21sp-Questions

 Open the TODAY's Lecture Questions doc for 11:30/2:30
3

https://tinyurl.com/CSE351-21sp-Questions

CSE351, Spring 2021L02: Memory & Data I

Roadmap

4

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

c.getMPG();

get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE351, Spring 2021L02: Memory & Data I

Memory, Data, and Addressing

 Hardware - High Level Overview

 Representing information as bits and bytes

 Memory is a byte-addressable array

 Machine “word” size = address size = register size

 Organizing and addressing data in memory

 Endianness – ordering bytes in memory

 Manipulating data in memory using C

 Boolean algebra and bit-level manipulations

5

CSE351, Spring 2021L02: Memory & Data I

Hardware: Physical View

6

CPU
(empty slot)

USB…

I/O
controller

Storage connections

Memory

CSE351, Spring 2021L02: Memory & Data I

Hardware: Logical View

7

CPU Memory

Disks Net USB Etc.

Bus

CSE351, Spring 2021L02: Memory & Data I

Hardware: 351 View (version 0)

 The CPU executes instructions

 Memory stores data

 Binary encoding!

 Instructions are just data
8

Memory

CPU

?

How are data
and instructions

represented?

CSE351, Spring 2021L02: Memory & Data I

Hardware: 351 View (version 0)

 To execute an instruction, the CPU must:

1) Fetch the instruction

2) (if applicable) Fetch data needed by the instruction

3) Perform the specified computation

4) (if applicable) Write the result back to memory
9

Memory

CPU

?
data

instructions

CSE351, Spring 2021L02: Memory & Data I

Hardware: 351 View (version 1)

10

Memory

CPU

take 469

registers

i-cache

data

instructions

 More CPU details:

 Instructions are held temporarily in the instruction cache

 Other data are held temporarily in registers

 Instruction fetching is hardware-controlled

 Data movement is programmer-controlled (assembly)

CSE351, Spring 2021L02: Memory & Data I

Hardware: 351 View (version 1)

11

Memory

CPU

take 469

registers

i-cache

data

instructions

 We will start by learning about Memory

How does a
program find its
data in memory?

CSE351, Spring 2021L02: Memory & Data I

Review Questions

 By looking at the bits stored in memory, I can tell
what a particular 4 bytes is being used to represent.

A. True B. False

 We can fetch a piece of data from memory as long as
we have its address.

A. True B. False

 Which of the following bytes have a most-significant
bit (MSB) of 1?

A. 0x63 B. 0x90 C. 0xCA D. 0xF
12

CSE351, Spring 2021L02: Memory & Data I

Binary Encoding Additional Details

 Because storage is finite in reality, everything is
stored as “fixed” length

 Data is moved and manipulated in fixed-length chunks

 Multiple fixed lengths (e.g. 1 byte, 4 bytes, 8 bytes)

 Leading zeros now must be included up to “fill out” the fixed
length

 Example: the “eight-bit” representation of the
number 4 is 0b00000100

13

Least Significant Bit (LSB)
Most Significant Bit (MSB)

CSE351, Spring 2021L02: Memory & Data I

An Address Refers to a Byte of Memory

 Conceptually, memory is a single, large array of bytes,
each with a unique address (index)
 Each address is just a number represented in fixed-length binary

 Programs refer to bytes in memory by their addresses
 Domain of possible addresses = address space

 We can store addresses as data to “remember” where other data is in
memory

 But not all values fit in a single byte… (e.g. 351)
 Many operations actually use multi-byte values

14

• • •

CSE351, Spring 2021L02: Memory & Data I

Machine “Words”

 Instructions encoded into machine code (0’s and 1’s)

 Historically (still true in some assembly languages), all
instructions were exactly the size of a word

 We have chosen to tie word size to address size/width

 word size = address size = register size

 word size = 𝑤 bits → 2𝑤 addresses

 Current x86 systems use 64-bit (8-byte) words

 Potential address space: 𝟐𝟔𝟒 addresses
264 bytes 1.8 x 1019 bytes
= 18 billion billion bytes = 18 EB (exabytes)

 Actual physical address space: 48 bits
15

CSE351, Spring 2021L02: Memory & Data I

Data Representations

 Sizes of data types (in bytes)

16
To use “bool” in C, you must #include <stdbool.h>

Java Data Type C Data Type 32-bit (old) x86-64

boolean bool 1 1

byte char 1 1

char 2 2

short short int 2 2

int int 4 4

float float 4 4

long int 4 8

double double 8 8

long long long 8 8

long double 8 16

(reference) pointer * 4 8(reference) pointer * 4 8

address size = word size

CSE351, Spring 2021L02: Memory & Data I

Address of Multibyte Data

 Addresses still specify
locations of bytes in memory,
but we can choose to view
memory as a series of chunks
of fixed-sized data instead
 Addresses of successive chunks

differ by data size

 Which byte’s address should we
use for each word?

 The address of any chunk of
memory is given by the address
of the first byte
 To specify a chunk of memory,

need both its address and its size

17

32-bit
data

Bytes
64-bit
data

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE351, Spring 2021L02: Memory & Data I

Alignment

 The address of a chunk of
memory is considered aligned
if its address is a multiple of its
size
 View memory as a series of

consecutive chunks of this
particular size and see if your
chunk doesn’t cross a boundary

18

32-bit
data

Bytes
64-bit
data

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

CSE351, Spring 2021L02: Memory & Data I

A Picture of Memory (64-bit view)

 A “64-bit (8-byte) word-aligned” view of memory:

 In this type of picture, each row is composed of 8 bytes

 Each cell is a byte

 An aligned, 64-bit
chunk of data will
fit on one row

19

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

one word

CSE351, Spring 2021L02: Memory & Data I

A Picture of Memory (64-bit view)

 A “64-bit (8-byte) word-aligned” view of memory:

 In this type of picture, each row is composed of 8 bytes

 Each cell is a byte

 An aligned, 64-bit
chunk of data will
fit on one row

20

one word

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

0x0C 0x0D 0x0E 0x0F0x08 0x09 0x0A 0x0B

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

CSE351, Spring 2021L02: Memory & Data I

Addresses and Pointers

 An address refers to a location in memory

 A pointer is a data object that holds an address

 Address can point to any data

 Value 504 stored at
address 0x08

 50410 = 1F816

= 0x 00 ... 00 01 F8

 Pointer stored at
0x38 points to
address 0x08

21

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

64-bit example
(pointers are 64-bits wide)

big-endian

CSE351, Spring 2021L02: Memory & Data I

Addresses and Pointers

 An address refers to a location in memory

 A pointer is a data object that holds an address

 Address can point to any data

 Pointer stored at
0x48 points to
address 0x38

 Pointer to a pointer!

 Is the data stored
at 0x08 a pointer?

 Could be, depending
on how you use it

22

64-bit example
(pointers are 64-bits wide)

big-endian

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

00 00 00 00 00 00 01 F8

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 38

CSE351, Spring 2021L02: Memory & Data I

Byte Ordering

 How should bytes within a word be ordered in
memory?

 Want to keep consecutive bytes in consecutive addresses

 Example: store the 4-byte (32-bit) int:
0x a1 b2 c3 d4

 By convention, ordering of bytes called endianness

 The two options are big-endian and little-endian
• In which address does the least significant byte go?

• Based on Gulliver’s Travels: tribes cut eggs on different sides
(big, little)

23

CSE351, Spring 2021L02: Memory & Data I

Byte Ordering

 Big-endian (SPARC, z/Architecture)

 Least significant byte has highest address

 Little-endian (x86, x86-64)

 Least significant byte has lowest address

 Bi-endian (ARM, PowerPC)

 Endianness can be specified as big or little

 Example: 4-byte data 0xa1b2c3d4 at address 0x100

24

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

CSE351, Spring 2021L02: Memory & Data I

Byte Ordering

 Big-endian (SPARC, z/Architecture)

 Least significant byte has highest address

 Little-endian (x86, x86-64)

 Least significant byte has lowest address

 Bi-endian (ARM, PowerPC)

 Endianness can be specified as big or little

 Example: 4-byte data 0xa1b2c3d4 at address 0x100

25

0x100 0x101 0x102 0x103

01 23 45 67

0x100 0x101 0x102 0x103

67 45 23 01

Big-Endian

Little-Endian

a1 b2 c3 d4

d4 c3 b2 a1

CSE351, Spring 2021L02: Memory & Data I

Byte Ordering Examples

26

Decimal: 12345
Binary: 0011 0000 0011 1001

Hex: 3 0 3 9

39

30

00

00

IA32, x86-64
(little-endian)

00

00

00

00

39
30
00
00

64-bit
x86-64

39
30
00
00

32-bit
IA32

30

39

00

00

SPARC
(big-endian)

30
39

00
00

32-bit
SPARC

30
39

00
00

64-bit
SPARC

00

00

00

00

int x = 12345;

// or x = 0x3039;

long int y = 12345;

// or y = 0x3039;

(A long int is
the size of a word)

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

CSE351, Spring 2021L02: Memory & Data I

Polling Question

 We store the value 0x 01 02 03 04 as a word at
address 0x100 in a big-endian, 64-bit machine

 What is the byte of data stored at address 0x104?

 Vote in Ed Lessons

A. 0x04

B. 0x40

C. 0x01

D. 0x10

E. We’re lost…

27

CSE351, Spring 2021L02: Memory & Data I

Endianness

 Endianness only applies to memory storage

 Often programmer can ignore endianness because it
is handled for you

 Bytes wired into correct place when reading or storing from
memory (hardware)

 Compiler and assembler generate correct behavior (software)

 Endianness still shows up:

 Logical issues: accessing different amount of data than how
you stored it (e.g. store int, access byte as a char)

 Need to know exact values to debug memory errors

 Manual translation to and from machine code (in 351)

28

CSE351, Spring 2021L02: Memory & Data I

Challenge Question

 Assume the state of memory is as shown below for a
little-endian machine.

 If we (1) read the value of an int at address 0x102,
(2) add 8 to it, and then (3) store the new value as an
int at address 0x104, which of the following
addresses retain their original value?

A. 0x102 B. 0x104 C. 0x105 D. 0x107

29

0x100 0x107

⋯ 9F 23 B7 C8 55 D0 00 04 08 ⋯

CSE351, Spring 2021L02: Memory & Data I

Summary

 Memory is a long, byte-addressed array

 Word size bounds the size of the address space and memory

 Different data types use different number of bytes

 Address of chunk of memory given by address of lowest byte
in chunk

 Object of 𝐾 bytes is aligned if it has an address that is a
multiple of 𝐾

 Pointers are data objects that hold addresses

 Endianness determines memory storage order for
multi-byte data

30

