
Number Representation & Strings

A. What is the value of the signed char 0x9E in decimal?

B. What is the value of the unsigned char 37 in binary?

C. If a = 0x2C, complete the bitwise C statement so that b = 0x1F.

b = a 0x

For the following problems we are working with a �loating point representation that follows the
same conventions as IEEE 754 except using 7 bits split into the following �ields:

Sign (1) Exponent (3) Mantissa (3)

D. What is the magnitude of the bias of this new representation?

E. What is the decimal value encoded by 0b1110101 in this representation?

F. What value will be read after we try to store -18 in this representation? (Circle one)

-16 -NaN -∞ -18

For the following problem, assume we are working with C strings encoded in ASCII. Consider the
declaration:

char str[] = “Hello!”;

G. What will be stored in the array str?

Pointers & Memory

For this problem we are using a 64-bit x86-64 machine (little endian). The current state of memory
(values in hex) is shown below:

Word
Addr +0 +1 +2 +3 +4 +5 +6 +7

0x00 20 F6 EF EA A2 5E 9F 1A

0x08 A2 D0 4F C4 A0 0C F7 27

0x10 B8 BD 1A CA 35 95 CB 80

0x18 84 3F 02 4F 8E F3 F6 E5

0x20 CD 4A F6 48 1A 6F 7E 63

A. Using the values shown above, �ill in the C type and hex value for each of the following C
expressions. Leading zeros are not required for the hex values.

C Expression C Type Hex Value

*(charP + 6)

(int**)shortP - 2

B. For the following snippet of C code, draw out a box-and-arrow diagram for the allocated
memory.

int x = 351, y = 332;
int *p = &x;
int **q = &p;
*q = &y;
*(*q) = x;

C & Assembly

Answer the questions below about the following x86-64 assembly function:

A. What variable type would %rdi be in the corresponding C program?

B. What variable type would the third argument be in the corresponding C program?

C. This function uses a while loop. Fill in the two conditionals below, using register names as
variable names (no declarations necessary).

while (&&)

D. Taking the variable types into account, describe at a high level what the purpose of Line 10
is (not just what it does mechanically).

E. Describe at a high level what you think this function accomplishes (not line-by-line).

SID: __________

6

Question 5: Procedures & The Stack [11 pts]

The recursive function count_nz counts the number of non-zero elements in an int array.
Example: if int a[] = {-1,0,1,255}, then count_nz(a,4) returns 3. The function and
its x86-64 disassembly are shown below:

(A) How much space (in bytes) does this function take up in our final executable? [1 pt]

(B) The compiler automatically creates labels it needs in assembly code. How many labels are
used in count_nz (including the procedure itself)? [1 pt]

int count_nz(int* ar, int num) {
 if (num>0)
 return !!(*ar) + count_nz(ar+1,num-1);
 return 0;
}

0000000000400536 <count_nz>:

 400536: 85 f6 testl %esi,%esi

 400538: 7e 1b jle 400555 <count_nz+0x1f>

 40053a: 53 pushq %rbx

 40053b: 8b 1f movl (%rdi),%ebx

 40053d: 83 ee 01 subl $0x1,%esi

 400540: 48 83 c7 04 addq $0x4,%rdi

 400544: e8 ed ff ff ff callq 400536 <count_nz>

 400549: 85 db testl %ebx,%ebx

 40054b: 0f 95 c2 setne %dl

 40054e: 0f b6 d2 movzbl %dl,%edx

 400551: 01 d0 addl %edx,%eax

 400553: eb 06 jmp 40055b <count_nz+0x25>

 400555: b8 00 00 00 00 movl $0x0,%eax

 40055a: c3 retq

 40055b: 5b popq %rbx

 40055c: c3 retq

SID: __________

7

(C) In terms of the C function, what value is being saved on the stack? [1 pt]

(D) What is the return address to count_nz that gets stored on the stack (in hex)? [1 pt]

0x

(E) Assume main calls count_nz(a,5) with an appropriately-sized array and then prints
the result using printf. Starting with (including) main, answer the following in number
of stack frames. [2 pt]

Total
created:

Max
depth:

(F) Assume main calls count_nz(a,6) with int a[] = {3,5,1,4,1,0}. We find that
the return address to main is stored on the stack at address 0x7fffeca3f748. What
data will be stored on the stack at address 0x7fffeca3f720? You may use the provided
stack diagram, but you will be graded primarily on the answer box to the right. [3 pt]

0x

0x7fffeca3f748 <ret addr to main>

0x7fffeca3f740

0x7fffeca3f738

0x7fffeca3f730

0x7fffeca3f728

0x7fffeca3f720

(G) A similar function count_z that counts the number of zero elements in an array is made

by making a single change to count_nz. What is the address of the changed assembly
instruction? [2 pt]

0x

SID: __________

4

Question 3: Design Questions [6 pts]

Answer the following questions in the boxes provided with a single sentence fragment.
Please try to write as legibly as possible.

(A) We have repeatedly stated that Intel is big on legacy and backwards-compatibility. Name

one example of this that we have seen in this class. [2 pt]

(B) Name one programming consequence if we decided to assign an address to every 4 bytes of

memory (instead of 1 byte). [2 pt]

(C) If we changed the x86-64 architecture to use 24 registers, how might we adjust the register

conventions? [2 pt]

One thing that should remain the same:

One thing that should change:

