
Number Representation & Strings

A. What is the value of the signed char 0x9E in decimal?

-128+16+8+4+2 = -98

B. What is the value of the unsigned char 37 in binary?

0b00100101

C. If a = 0x2C, complete the bitwise C statement so that b = 0x1F.

b = a ^ 0x33

For the following problems we are working with a �loating point representation that follows the
same conventions as IEEE 754 except using 7 bits split into the following �ields:

Sign (1) Exponent (3) Mantissa (3)

D. What is the magnitude of the bias of this new representation?

23-1-1 = 3

E. What is the decimal value encoded by 0b1110101 in this representation?
S = 1, E = 0b110 = 6, M = 0b101

Value = (-1)1 x 1.1012 x 26-3 = -1.101 x 23 = -11012 = -13
F. What value will be read after we try to store -18 in this representation? (Circle one)

-16 -NaN -∞ -18
-18 = -(16 + 2) = -(24+21) = -1.0012 x 24. Largest normalized exponent we can encode is 0b110,
which gives Exp = 3. As a result this causes over�low, resulting in -∞ being stored (as 0b1111000)

For the following problem, assume we are working with C strings encoded in ASCII. Consider the
declaration:

char str[] = “Hello!”;

G. What will be stored in the array str? (Bytes given in hex)

48 65 6C 6C 6F 21 0

Pointers & Memory

For this problem we are using a 64-bit x86-64 machine (little endian). The current state of memory
(values in hex) is shown below:

Word
Addr +0 +1 +2 +3 +4 +5 +6 +7

0x00 20 F6 EF EA A2 5E 9F 1A

0x08 A2 D0 4F C4 A0 0C F7 27

0x10 B8 BD 1A CA 35 95 CB 80

0x18 84 3F 02 4F 8E F3 F6 E5

0x20 CD 4A F6 48 1A 6F 7E 63

A. Using the values shown above, �ill in the C type and hex value for each of the following C
expressions. Leading zeros are not required for the hex values.

C Expression C Type Hex Value

*(charP + 6) char 0x CA

(int**)shortP - 2 int** 0x E

charP: 0xD + 6 (scaled by sizeof(char) = 1) yields 0x13. Address 0x13 holds the char 0xCA.
shortP: 0x1E – 2 (scaled by sizeof(int*) = 8) yields 0xE.

B. For the following snippet of C code, draw out a box-and-arrow diagram for the allocated
memory.

int x = 351, y = 332;
int *p = &x;
int **q = &p;
*q = &y;
*(*q) = x;

C & Assembly

Answer the questions below about the following x86-64 assembly function:

A. What variable type would %rdi be in the corresponding C program?
char*, unsigned char* is also acceptable due to zero-extension.
Line 5: we read a byte out of memory by dereferencing the value in %rdi

B. What variable type would the third argument be in the corresponding C program?
char
Line 8: %dl (lowest byte of %rdx) is compared to the byte read out of memory.

C. This function uses a while loop. Fill in the two conditionals below, using register names as
variable names (no declarations necessary).

D. Taking the variable types into account, describe at a high level what the purpose of Line 10
is (not just what it does mechanically).
Adds a null terminator (char with value 0) to the end of *rsi (the destination string).

E. Describe at a high level what you think this function accomplishes (not line-by-line).
It copies all of the characters from a source string (in %rdi) to a destination string (in %rsi)
until it sees a speci�ied character (in %dl) or the end of the source string. The destination
String is then null-terminated.

6

Question 5: Procedures & The Stack [24 pts]

The recursive function sum_r() calculates the sum of the elements of an int array and its
x86-64 disassembly is shown below:

(A) The addresses shown in the disassembly are all part of which section of memory? [2 pt]

Text or .text also accepted. Instructions/Code

(B) Disassembly (as shown here) is different from assembly (as would be found in an assembly
file). Name two major differences: [4 pt]

Differences: Some possible answers include:
x No machine code (middle column) would be shown in the assembly (i.e. the

code hasn’t been assembled yet).
x Finalized addresses would not be found in the assembly (left column).
x All labels would still be symbolic/named in the assembly instructions (e.g. jne,

jmp, callq).

int sum_r(int *ar, unsigned int len) {
 if (!len) {
 return 0;
 else
 return *ar + sum_r(ar+1,len-1);
}

0000000000400507 <sum_r>:

 400507: 41 53 pushq %r12

 400509: 85 f6 testl %esi,%esi

 40050b: 75 07 jne 400514 <sum_r+0xd>

 40050d: b8 00 00 00 00 movl $0x0,%eax

 400512: eb 12 jmp 400526 <sum_r+0x1f>

 400514: 44 8b 1f movl (%rdi),%r12d

 400517: 83 ee 01 subl $0x1,%esi

 40051a: 48 83 c7 04 addq $0x4,%rdi

 40051e: e8 e4 ff ff ff callq 400507 <sum_r>

 400523: 44 01 d8 addl %r12d,%eax

 400526: 41 5b popq %r12

 400528: c3 retq

SID: ____________

7

(C) What is the return address to sum_r that gets stored on the stack? Answer in hex. [2 pt]

The address of the instruction after call. 0x 400523

(D) What value is saved across each recursive call? Answer using a C expression. [2 pt]

The instruction at address 0x400514 dereferences %rdi and
stores the value in %r12d. *ar

(E) Assume main calls sum_r(ar,3) with int ar[] = {3,5,1}. Fill in the snapshot of
memory below the top of the stack in hex as this call to sum_r returns to main. For
unknown words, write “0x unknown”. [6 pt]

0x7fffffffde20 <ret addr to main>
sum_r(ar,3)

0x7fffffffde18 <original r12>

0x7fffffffde10 0x 400523 <ret addr>
sum_r(ar+1,2)

0x7fffffffde08 0x 3 <*ar>

0x7fffffffde00 0x 400523 <ret addr>
sum_r(ar+2,1)

0x7fffffffddf8 0x 5 <*ar>

0x7fffffffddf0 0x 400523 <ret addr>
sum_r(ar+3,0)

0x7fffffffdde8 0x 1 <*ar>

The base case DOES still push %r12 onto the stack.

(F) Assembly code sometimes uses relative addressing. The last 4 bytes of the callq
instruction encode an integer (in little endian). This value represents the difference
between which two addresses? Hint: both addresses are important to this callq. [4 pt]

0xffffffe4 = -(0x1b + 1) = -28 value (decimal): -28

This corresponds to the address we jump to. address 1: 0x 400507

This corresponds to the return address. address 2: 0x 400523

(G) What could we change in the assembly code of this function to reduce the amount of
Stack memory used while keeping it recursive and functioning properly? [4 pt]

The issue with recursive functions is that no matter what kind of register you use to
save a value (caller-saved or callee-saved), the recursive call will overwrite that value
because it’s an identical function! So we actually can’t avoid pushing something to the
stack without making the function iterative. So any potential saving of Stack space will
come from the base case. Keep reading for two possible solution types:

8

Callee-saved: %r12 is a callee-saved register. This means that its old value just
needs to be saved before we overwrite its value; it does not need to be saved at the very
top of sum_r.

1) Move the pushq instruction into the recursive case (below the jmp instruction).

2) Either make the jmp go to address 0x400528 instead OR
move the movl $0,%eax above the jne and change the jne to je 0x400528.

Caller-saved: The value we really care about saving across the recursive call (ar or
*ar), already starts in a caller-saved register in %rdi! This value must then be saved
before we make a recursive call to sum_r and restored once it returns:

1) Convert the pushq %r12 to pushq %rdi and move it down to replace the
movl (%rdi),%r12d instruction.

2) Convert the popq %r12 to popq %rdi and move it right after/below the
callq.

3) Convert the addl %r12d,%eax to addl (%rdi),%eax.

4

Question 3: Design Questions [12 pts]

Answer the following questions in the boxes provided with a single sentence fragment.
Please try to write as legibly as possible.

(A) What values can S take in an x86-64 memory operand? Briefly describe why these choices

are useful/important. [4 pt] – a memory operand is of the form D(Rb,Ri,S).

Values: 1, 2, 4, 8

Importance: These values represent the different scaling factors used in pointer

arithmetic based on the data type sizes.

(B) Until very recently (Java 8/9), Java did not support unsigned integer data types. Name

one advantage and one disadvantage to this decision to omit unsigned. [4 pt]

Advantage: Some possible answers:

x Less confusing/more consistent arithmetic interpretations for the programmer.

x Fewer cases of implicit casting.

x Fewer data types to worry about.

Disadvantage: Some possible answers:

x Need to use larger data widths for numbers in the range (TMax, UMax] for a

given width.

x More difficult to do unsigned comparisons.

x More difficult to do zero-extension.

(C) Condition codes are part of the processor/CPU state. Would our instruction set

architecture (ISA) still work if we got rid of the condition codes? Briefly explain. [4 pt]

Circle one: Yes No

Explanation: Our jump and set instructions, which rely on the values of the condition

codes, would no longer work. Without jump instructions, we couldn’t implement most

of our program’s control flow.

