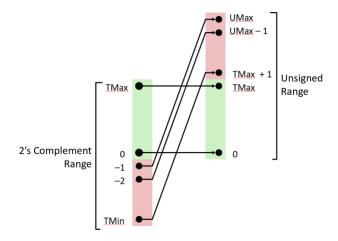
CSE 351 Section 3 - Integers and Floating Point

Welcome back to section, we're happy that you're here ③

Integers and Arithmetic Overflow

Arithmetic overflow occurs when the result of a calculation can't be represented in the current encoding scheme (*i.e.*, it lies outside of the representable range of values), resulting in an incorrect value.

- **Unsigned overflow:** the result lies outside of [UMin, UMax]; an indicator of this is when you add two numbers and the result is smaller than either number.
- **Signed overflow:** the result lies outside of [TMin, TMax]; an indicator of this is when you add two numbers with the same sign and the result has the opposite sign.



Exercises:

1) Assuming these are all signed two's complement 6-bit integers, compute the result of each of the following additions. For each, indicate if it resulted in overflow. [Spring 2016 Midterm 1C]

001001	110001	011001	101111
+ 110110	+ 111011	+ 001100	+ 011111
111111	1 101100	100101	1 001110
No	No	Yes	No

2) Find the largest 8-bit unsigned numeral (answer in hex) such that c + 0x80 causes NEITHER signed nor unsigned overflow in 8 bits. [Autumn 2019 Midterm 1C]

Unsigned overflow will occur for c > 0x80. Signed overflow can only happen if c is negative (also > 0x80). Largest is therefore, 0x7F

3) Find the smallest 8-bit numeral (answer in hex) such that c + 0x71 causes signed overflow, but NOT unsigned overflow in 8 bits. [Autumn 2018 Midterm 1C]

For signed overflow, need (+) + (+) = (-). For no unsigned overflow, need no carryout from MSB. The first (-) encoding we can reach from 0x71 is 0x80. 0x80 - 0x71 = 0xF.

Goals of Floating Point

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high amount of precision, and [3] real arithmetic results ($e.g. \approx$ and NaN).

IEEE 754 Floating Point Standard

The <u>value</u> of a real number can be represented in scientific binary notation as:

Value =
$$(-1)^{sign} \times Mantissa_2 \times 2^{Exponent} = (-1)^S \times 1.M_2 \times 2^{E-bias}$$

The <u>binary representation</u> for floating point values uses three fields:

- **S**: encodes the *sign* of the number (0 for positive, 1 for negative)
- **E**: encodes the *exponent* in **biased notation** with a bias of 2^{w-1}-1
- **M**: encodes the *mantissa* (or *significand*, or *fraction*) stores the fractional portion, but does not include the implicit leading 1.

	S	E	М
float	1 bit	8 bits	23 bits
double	1 bit	11 bits	52 bits

How a float is interpreted depends on the values in the exponent and mantissa fields:

E	M	Meaning
0b00	0b00	+/- 0
0b00	non-zero	denormalized number
everything else	anything	normalized number
0b11	0b00	+/- ∞
0b11	non-zero	Not-a-Number (NaN)

Exercises:

Bias Notation

1) Suppose that instead of 8 bits, E was only designated 4 bits. What is the bias in this case?

 $2^{(4-1)} - 1 = 7$

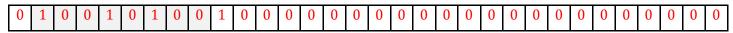
2) Compare these two representations of E for the following values:

Exponent	E (4 bits)				E (8 bits)									
1		1	0	0	0		1	0	0	0	0	0	0	0
0		0	1	1	1		0	1	1	1	1	1	1	1
-1		0	1	1	0		0	1	1	1	1	1	1	0

The representations are the same except the length of number of repeating bits in the middle are different.

Floating Point / Decimal Conversions

- 3) Let's say that we want to represent the number 3145728.125 (broken down as $2^{21} + 2^{20} + 2^{-3}$)
 - a. Convert this number to into single precision floating point representation:



- b. How does this number highlight a limitation of floating point representation? Could only represent $2^21 + 2^20$. Not enough bits in the mantissa to hold 2^-3 , which caused rounding.
- 4) What are the decimal values of the following floats?

0x80000000 0xFF94BEEF 0x41180000 -0 NaN +9.5

 $0x41180000 = 0b \ 0|100 \ 0001 \ 0|001 \ 1000 \ 0...0.$ S = 0, E = $128+2 = 130 \rightarrow$ Exponent = E - bias = 3, Mantissa = 1.0011_2 $1.0011_2 \times 2^3 = 1001.1_2 = 8 + 1 + 0.5 = 9.5$

Floating Point Mathematical Properties

• Not <u>associative</u>: $(2 + 2^{50}) - 2^{50} \neq 2 + (2^{50} - 2^{50})$

• Not <u>distributive</u>: $100 \times (0.1 + 0.2) \neq 100 \times 0.1 + 100 \times 0.2$

• Not <u>cumulative</u>: $2^{25} + 1 + 1 + 1 + 1 \neq 2^{25} + 4$

Exercises:

5) Based on floating point representation, explain why each of the three statements above occurs.

Associative: Only 23 bits of mantissa, so $2 + 2^{50} = 2^{50}$ (2 gets rounded off). So LHS = 0, RHS = 2.

<u>Distributive</u>: 0.1 and 0.2 have infinite representations in binary point $(0.2 = 0.\overline{0011}_2)$, so the LHS and

RHS suffer from different amounts of rounding (try it!).

Cumulative: 1 is 25 powers of 2 away from 2^{25} , so $2^{25} + 1 = 2^{25}$, but 4 is 23 powers of 2 away from 2^{25} , so

it doesn't get rounded off.

- 6) If x and y are variable type float, give two *different* reasons why (x+2*y)-y==x+y might evaluate to false.
 - (1) Rounding error: like what is seen in the examples above.
 - (2) Overflow: if x and y are large enough, then x+2*y may result in infinity when x+y does not.