, CSE 351

Section 2

Y/

Administrivia

- HWA4 due Friday 4/9 11:59PM

- Labla + HW5 due Monday 4/12 11:59PM

Pointer Operations

&p *Pp
Gives the memory address of the Give the value at address p, rather
variable p, rather than its value. than the value p itself. We often call

this “dereferencing.”

Say we had a variable x with the value Ox15F, stored at 0x400. Then:

e The expression &x would evaluate to 0x400
e The expression x would evaluate to Ox15F
e The expression *x would evaluate to (the value stored at address Ox15F)

Pointer Arithmetic

In C, arithmetic on pointers (++, +, --, -) is scaled by the size of the data type the
pointer points to. Consider p declared with pointer typex p;

e The expressionp = p + i will change the value of p (an address) by
i*sizeof (type) (in bytes).

e By contrast, the line *p = *p + 1 will perform regular arithmetic unless *p
is also of a pointer data type.

What About Arrays?

int y[10]; Arrays in C are contiguous chunks of
T : memory, t.)ut t.hey h.ave a special
relationship with pointers.
Z =Y,
If we have an array variable, it
N functions like a constant pointer to
y[2] = 5; the first element in the array (note:
z[2] = 5; Z’c”f’isa‘l';‘?'t, not always! e.g. sizeof)
*(z + 2) = 5; We will discuss arrays in more detail
- in a future section!

Example %1

int x;

int *ptr;
ptr = &X;

X = 5;

*ptr = 200;
ptr += 2;

Consider the code to the left. How
can we represent the result after
each line diagrammatically?

Example %1

ptr = &X;

X = 5;

*ptr = 200;
ptr += 2;

Declare two variables, an int and a
pointer to an int.

Note that neither is initialized! We’ve
set aside space for the variables but
they’re full of garbage.

Example %1

int x;

int *ptr;
ptr = &X;

X = 5;

*ptr = 200;
ptr += 2;

We use the address-of operator to
assign the address where the
variable x is stored to ptr.

Remember, a pointer is just a
variable which holds an address!

>

ptr X

Example %1

int x;

int *ptr;
ptr = &X;

X = 5;

*ptr = 200;
ptr += 2;

Now we assign x a value.

ptr X

Example %1

int x;
int *ptr;
ptr = &X;
X = 95;

*ptr = 200;

ptr += 2;

Dereference ptr and assign a value at
the location pointed to. This is the
location where X is, so we’ve
changed the value of x!

> 200

ptr X

Example %1

int x;

int *ptr;
ptr = &X;

X = 95;

*ptr = 200;
ptr += 2;

Increment ptr by 2. Now that we’re
manipulating a pointer variable, we
perform pointer arithmetic. The value
of x does not change.

ptr incremented by 8 bytes
== 2 * sizeof(int) *

200 | ? ?

ptr X

Exercise #1

int main(dint argc, char **xargv) {
int x = 410, y = 350; // assume &x = 0x10, &y = 0x14

int *p = &x; // p 1is a pointer to an integer
*P =Y,

p=p+4;

p = &y;

X = *%p + 1;

You try! “Exercise”- first page of the
section handout

Bitwise Operators

Bitwise OperatorsinC

These perform operations on each bit independently in a value.

AND:x&y OR: x | vy XOR: x Ny
0 1 0 1 0 1

0

.

1

0

0

.

0

0

0

1

0

|

0

1

1

1

0

.

0

1

1

0

“Flips” all bits

1 iff both bits 1

1 iff either or both 1

1 iff exactly one is 1

Bitwise vs Logical

Remember, bitwise operators are not the same as logical operators.

While they perform similar “logical” operations (AND, OR, NOT), bitwise operators
transform the individual bits of a value, whereas logical operators are used in
boolean expressions and treat entire values as either true or false.

For example, OXA & Oxb = 0x0, but OxA && Ox5 = 0Ox1.

Masking Example

Masking is using a specific bit vector and operator to change data or extract
information.

How would you replace the least significant byte of x with OXxAA? For example:
0x2134 should become 0x21AA.

1. Zero out the LS byte with an AND mask.
e X = X & ~OxFF (or x &= ~0OxFF)

2. Use an OR to set the LS byte.
e X = X | OxAA (or x |= OxAA)

X X X
> — o
© ©
TRTIT
X
X X X
> — o
PR
TRTIT

=

~X

Exercise 1

If signed char a = 0x88, complete the bitwise C statement so thatb =
OxF1. The first blank should be an operator and the second should be a numeral.

a = 0b10001000
OxF1 = 0b11110001

b = a OXx

Exercise 2

// returns the number of pairs of bits that are the opposite of each other
// (i.e. O and 1 or 1 and 0). Bits are "paired" by taking adjacent bits

// starting at the 1sb (0) and pairs do not overlap. For example, there are 16
// distinct pairs in a 32-bit integer.

int num_pairs_opposite(int x) 3
int count = 0;
for (int i = 0; i < 8 * sizeof(int) / 2; i++)
// fill in the for loop!

§

return count;

§

What’s Two’s Complement?

A way of representing signed integers (positive or negative)

Similar to signed integers, except the most significant bit has negative “weight”
(but equivalent magnitude)

Why Two’s Complement?

We use two’s complement because it has many
handy properties:

Addition and subtraction are performed the
same way as unsigned

Positive numbers are represented the same
way as unsigned

Single zero (compare sign-magnitude)

The representation of 0 is all zeroes (0b0...0)
Roughly the same number of negative and
positive integers

1111 0000
1110 0001
1101 0010
1100 0011

1010
1001

Negation

If we want to negate
a two’s complement
integer, we flip

every bit and add 1:

=X = ~X + 1

O 0|0 0| 0

-128 | 64 0 0 0 4 0 0
0O 0 11
0 0 32 16 8 0 2 1
0 0 1 fio|o
0 0 23 16 8 4

59

60

Exercise 1a

What is the largest 8-bit integer? What happens when we add 1? What is the
most negative integer we can represent?

Unsigned Two’s Complement
Largest: Largest:

Largest + 1: Largest + 1:

Most Negative: Most Negative:

Exercise 1b

What are the 8-bit representations of the following numbers?

Unsigned

Two’s Complement

39:

-39:

127 :

Remember! =x = ~x + 1

Exercise 2

Take the 32-bit numeral 0xC0800000. Circle the number representation below
that has the most negative value for this numeral.

Sign & Magnitude Two’s Complement Unsigned

Exercise 3

Given the 4-bit bit vector 0b1101, what is its value in decimal (base 10)? Circle
your answer.

13 -3 -5 Undefined

