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Relevant Course Information

❖ hw21 due Friday (11/26)

❖ Lab 4 due Monday (11/29)

❖ hw22 due Wednesday (12/1)

❖ “Virtual Section” on Virtual Memory

▪ Worksheet and solutions released on Wednesday or 
Thursday

▪ Videos will be released of material review and problem 
solutions

❖ Final Dec. 13-15, regrade requests Dec. 18-19

2



CSE351, Autumn 2021L24:  Virtual Memory III

Reading Review

❖ Terminology:

▪ Address translation:  page hit, page fault

▪ Translation Lookaside Buffer (TLB):  TLB Hit, TLB Miss

❖ Questions from the Reading?
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Address Translation:  Page Hit

4

1) Processor sends virtual address to MMU (memory management unit)

2-3)  MMU fetches PTE from page table in cache/memory
(Uses PTBR to find beginning of page table for current process)

4) MMU sends physical address to cache/memory requesting data

5) Cache/memory sends data to processor

MMU Cache/
MemoryPA

Data

CPU
VA

CPU Chip
PTEA

PTE
1

2

3

4

5

VA = Virtual Address PTEA = Page Table Entry Address PTE= Page Table Entry 
PA = Physical Address Data = Contents of memory stored at VA originally requested by CPU 
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Address Translation:  Page Fault
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1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in cache/memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7



CSE351, Autumn 2021L24:  Virtual Memory III

Hmm… Translation Sounds Slow

❖ The MMU accesses memory twice: once to get the 
PTE for translation, and then again for the actual 
memory request

▪ The PTEs may be cached in L1 like any other memory word

• But they may be evicted by other data references

• And a hit in the L1 cache still requires 1-3 cycles

❖ What can we do to make this faster?
▪ Solution:  add another cache!  🎉
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Speeding up Translation with a TLB

❖ Translation Lookaside Buffer (TLB):

▪ Small hardware cache in MMU
• Split VPN into TLB Tag and TLB Index based on # of sets in TLB

▪ Maps virtual page numbers to physical page numbers

▪ Stores page table entries for a small number of pages
• Modern Intel processors have 128 or 256 entries in TLB

▪ Much faster than a page table lookup in cache/memory

7

Virtual Page Number Page offset

TLBT TLBI

TLB

PTETLBT

PTE
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TLB Hit

❖ A TLB hit eliminates a memory access!
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MMU
Cache/

Memory

PA

Data

CPU
VA

CPU Chip

PTE
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2

4

5

TLB

VPN 3

TLB

PTEVPN →

PTEVPN →
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TLB Miss

❖ A TLB miss incurs an additional memory access (the PTE)
▪ Fortunately, TLB misses are rare
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MMU
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MemoryPA
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Fetching Data on a Memory Read

1) Check TLB

▪ Input:  VPN,  Output:  PPN

▪ TLB Hit: Fetch translation, return PPN

▪ TLB Miss: Check page table (in memory)
• Page Table Hit: Load page table entry into TLB

• Page Fault: Fetch page from disk to memory, update 
corresponding page table entry, then load entry into TLB

2) Check cache

▪ Input:  physical address,  Output:  data

▪ Cache Hit: Return data value to processor

▪ Cache Miss: Fetch data value from memory, store it in 
cache, return it to processor
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Address Translation

Virtual Address

TLB Lookup

Check the
Page Table

Update 
TLB

Page Fault
(OS loads page)

Protection
Check

Physical
Address

TLB Miss TLB Hit

Page not
in Mem

Access
Denied

Access 
Permitted

Protection
Fault

SIGSEGV

Page 
in Mem

Check cacheFind in Disk Find in Mem
HitMiss
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Address Manipulation
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Page offset

Page Offset

Virtual Page Number

TLB Index

request from CPU:

𝑚-bit physical 
address:

split to access TLB:

(on TLB miss) access PT:

𝑛-bit virtual address

Page offsetPhysical Page Number

Block offsetCache Index

TLB Tag

Cache Tagsplit to access cache:

TRANSLATION
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Context Switching Revisited

❖ What needs to happen when the CPU switches 
processes?

▪ Registers:
• Save state of old process, load state of new process

• Including the Page Table Base Register (PTBR)

▪ Memory:
• Nothing to do!  Pages for processes already exist in memory/disk and 

protected from each other

▪ TLB:
• Invalidate all entries in TLB – mapping is for old process’ VAs 

▪ Cache:
• Can leave alone because storing based on PAs – good for shared data

13



CSE351, Autumn 2021L24:  Virtual Memory III

Summary of Address Translation Symbols

❖ Basic Parameters
▪ N = 2𝑛 Number of addresses in virtual address space
▪ M = 2𝑚 Number of addresses in physical address space
▪ P = 2𝑝 Page size (bytes)

❖ Components of the virtual address (VA)
▪ VPO Virtual page offset 
▪ VPN Virtual page number
▪ TLBI TLB index
▪ TLBT TLB tag

❖ Components of the physical address (PA)
▪ PPO Physical page offset (same as VPO)
▪ PPN Physical page number
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Simple Memory System Example (small)

❖ Addressing

▪ 14-bit virtual addresses

▪ 12-bit physical address

▪ Page size = 64 bytes
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13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

Virtual Page Number Virtual Page Offset

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

Physical Page Number Physical Page Offset
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Simple Memory System:  Page Table

❖ Only showing first 16 entries (out of _____)

▪ Note:  showing 2 hex digits for PPN even though only 6 bits

▪ Note: other management bits not shown, but part of PTE

16

VPN PPN Valid

0 28 1

1 – 0

2 33 1

3 02 1

4 – 0

5 16 1

6 – 0

7 – 0

VPN PPN Valid

8 13 1

9 17 1

A 09 1

B – 0

C – 0

D 2D 1

E – 0

F 0D 1
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Simple Memory System:  TLB

❖ 16 entries total

❖ 4-way set associative

17

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual page offsetvirtual page number

TLB indexTLB tag

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

Why does the 
TLB ignore the 
page offset?
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Simple Memory System:  Cache

❖ Direct-mapped with K = 4 B, C/K = 16

❖ Physically addressed
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11 10 9 8 7 6 5 4 3 2 1 0

physical page offsetphysical page number

cache offsetcache indexcache tag

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag

Index Tag Valid B0 B1 B2 B3

0 19 1 99 11 23 11

1 15 0 – – – –

2 1B 1 00 02 04 08

3 36 0 – – – –

4 32 1 43 6D 8F 09

5 0D 1 36 72 F0 1D

6 31 0 – – – –

7 16 1 11 C2 DF 03

Index Tag Valid B0 B1 B2 B3

8 24 1 3A 00 51 89

9 2D 0 – – – –

A 2D 1 93 15 DA 3B

B 0B 0 – – – –

C 12 0 – – – –

D 16 1 04 96 34 15

E 13 1 83 77 1B D3

F 14 0 – – – –
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Current State of Memory System

Cache:

TLB:
Page table (partial):

Index Tag V B0 B1 B2 B3

0 19 1 99 11 23 11

1 15 0 – – – –

2 1B 1 00 02 04 08

3 36 0 – – – –

4 32 1 43 6D 8F 09

5 0D 1 36 72 F0 1D

6 31 0 – – – –

7 16 1 11 C2 DF 03

Index Tag V B0 B1 B2 B3

8 24 1 3A 00 51 89

9 2D 0 – – – –

A 2D 1 93 15 DA 3B

B 0B 0 – – – –

C 12 0 – – – –

D 16 1 04 96 34 15

E 13 1 83 77 1B D3

F 14 0 – – – –

Set Tag PPN V Tag PPN V Tag PPN V Tag PPN V

0 03 – 0 09 0D 1 00 – 0 07 02 1

1 03 2D 1 02 – 0 04 – 0 0A – 0

2 02 – 0 08 – 0 06 – 0 03 – 0

3 07 – 0 03 0D 1 0A 34 1 02 – 0

VPN PPN V
0 28 1
1 – 0
2 33 1
3 02 1
4 – 0
5 16 1
6 – 0
7 – 0

VPN PPN V
8 13 1
9 17 1
A 09 1
B – 0
C – 0
D 2D 1
E – 0
F 0D 1



CSE351, Autumn 2021L24:  Virtual Memory III

Memory Request Example #1

❖ Virtual Address:  0x03D4

❖ Physical Address:  

20

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

1

7

1

6

0

5

1

4

0

3

1

2

0

1

0

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag
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Memory Request Example #2

❖ Virtual Address:  0x038F

❖ Physical Address:  

21

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

1

7

0

6

0

5

0

4

1

3

1

2

1

1

1

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag
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Memory Request Example #3

❖ Virtual Address:  0x0020

❖ Physical Address:  

22

TLBITLBT

0

13

0

12

0

11

0

10

0

9

0

8

0

7

0

6

1

5

0

4

0

3

0

2

0

1

0

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag
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Memory Request Example #4

❖ Virtual Address:  0x036B

❖ Physical Address:  

23

TLBITLBT

0

13

0

12

0

11

0

10

1

9

1

8

0

7

1

6

1

5

0

4

1

3

0

2

1

1

1

0

VPOVPN

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

VPN ______ TLBT _____ TLBI _____ TLB Hit? ___ Page Fault? ___ PPN _____

CT ______ CI _____ CO _____ Cache Hit? ___ Data (byte) _______

Note: It is just 
coincidence that the 

PPN is the same width 
as the cache Tag
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Memory Overview

24

Disk

Main memory
(DRAM)

CacheCPU

Page

Page
Line

Block

requested 32-bits

❖ movl 0x8043ab, %rdi

TLB

MMU
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Virtual Memory Summary

❖ Programmer’s view of virtual memory

▪ Each process has its own private linear address space

▪ Cannot be corrupted by other processes

❖ System view of virtual memory

▪ Uses memory efficiently by caching virtual memory pages
• Efficient only because of locality

▪ Simplifies memory management and sharing

▪ Simplifies protection by providing permissions checking

25
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❖ Multi-level Page Tables

26
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Page Table Reality

❖ Just one issue… the numbers don’t work out for the 
story so far!

❖ The problem is the page table for each process:

▪ Suppose 64-bit VAs, 8 KiB pages, 8 GiB physical memory

▪ How many page table entries is that? 

▪ About how long is each PTE?

▪ Moral: Cannot use this naïve implementation of the 
virtual→physical page mapping – it’s way too big

27

This is extra 
(non-testable) 

material
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A Solution:  Multi-level Page Tables

28

Page table 
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

Virtual Address

Physical Address

... ...

Level 1
page table

Level 2
page table

Level k
page table

TLB

PTEVPN →

PTEVPN →

PTEVPN →

This is called a page walk

This is extra 
(non-testable) 

material
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Multi-level Page Tables

❖ A tree of depth 𝑘 where each node at depth 𝑖 has up to 2𝑗

children if part 𝑖 of the VPN has 𝑗 bits

❖ Hardware for multi-level page tables inherently more 
complicated
▪ But it’s a necessary complexity – 1-level does not fit

❖ Why it works: Most subtrees are not used at all, so they are 
never created and definitely aren’t in physical memory
▪ Parts created can be evicted from cache/memory when not being used

▪ Each node can have a size of ~1-100KB

❖ But now for a 𝑘-level page table, a TLB miss requires 𝑘 + 1
cache/memory accesses
▪ Fine so long as TLB misses are rare – motivates larger TLBs

29

This is extra 
(non-testable) 

material
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For Fun:  DRAMMER Security Attack

❖ Why are we talking about this?

▪ Recent: First announced in October 2016; latest attack 
variant announced November 2021

▪ Relevant: Uses your system’s memory setup to gain 
elevated privileges
• Ties together some of what we’ve learned about virtual memory and 

processes

▪ Interesting: It’s a software attack that uses only hardware 
vulnerabilities and requires no user permissions

30
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Underlying Vulnerability:  Row Hammer

❖ Dynamic RAM (DRAM) has gotten denser over time

▪ DRAM cells physically closer and 
use smaller charges

▪ More susceptible to “disturbance
errors” (interference)

❖ DRAM capacitors need to be 
“refreshed” periodically (~64 ms)

▪ Lose data when loss of power

▪ Capacitors accessed in rows

❖ Rapid accesses to one row can
flip bits in an adjacent row!
▪ ~ 100K to 1M times

31

By Dsimic (modified), CC BY-SA 4.0, 
https://commons.wikimedia.org/w

/index.php?curid=38868341

https://commons.wikimedia.org/w/index.php?curid=38868341
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Row Hammer Exploit

❖ Force constant memory access

▪ Read then flush the cache 

▪ clflush – flush cache line

• Invalidates cache line containing the 
specified address

• Not available in all machines or 
environments

▪ Want addresses X and Y to fall in activation target row(s)

• Good to understand how banks of DRAM cells are laid out

❖ The row hammer effect was discovered in 2014 

▪ Only works on certain types of DRAM (2010 onwards)

▪ These techniques target x86 machines

32

hammertime: 

mov (X), %eax

mov (Y), %ebx

clflush (X) 

clflush (Y) 

jmp hammertime
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Consequences of Row Hammer

❖ Row hammering process can affect another process 
via memory

▪ Circumvents virtual memory protection scheme

▪ Memory needs to be in an adjacent row of DRAM

❖ Worse:  privilege escalation

▪ Page tables live in memory!

▪ Hope to change PPN to access other parts of memory, or 
change permission bits

▪ Goal: gain read/write access to a page containing a page 
table, hence granting process read/write access to all of 
physical memory

33
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Effectiveness?

❖ Doesn’t seem so bad – random bit flip in a row of 
physical memory

▪ Vulnerability affected by system setup and physical 
condition of memory cells

❖ Improvements:

▪ Double-sided row hammering increases speed & chance

▪ Do system identification first  (e.g., Lab 4)
• Use timing to infer memory row layout & find “bad” rows

• Allocate a huge chunk of memory and try many addresses, looking for 
a reliable/repeatable bit flip

▪ Fill up memory with page tables first
• fork extra processes; hope to elevate privileges in any page table
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What’s DRAMMER?

❖ No one previously made a huge fuss

▪ Prevention: error-correcting codes, target row refresh, 
higher DRAM refresh rates

▪ Often relied on special memory management features

▪ Often crashed system instead of gaining control

❖ Research group found a deterministic way to induce 
row hammer exploit in a non-x86 system (ARM)

▪ Relies on predictable reuse patterns of standard physical 
memory allocators

▪ Universiteit Amsterdam, Graz University of Technology, and
University of California, Santa Barbara
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DRAMMER Demo Video 

❖ It’s a shell, so not that sexy-looking, but still interesting
▪ Apologies that the text is so small on the video
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How did we get here?

❖ Computing industry demands more and faster storage 
with lower power consumption

❖ Ability of user to circumvent the caching system
▪ clflush is an unprivileged instruction in x86

▪ Other commands exist that skip the cache

❖ Availability of virtual to physical address mapping
▪ Example: /proc/self/pagemap on Linux 

(not human-readable)

❖ Google patch for Android (Nov. 8, 2016)

▪ Patched the ION memory allocator
37



CSE351, Autumn 2021L24:  Virtual Memory III

More reading for those interested

❖ DRAMMER paper:  
https://vvdveen.com/publications/drammer.pdf

❖ Google Project Zero:  
https://googleprojectzero.blogspot.com/2015/03/exploiti
ng-dram-rowhammer-bug-to-gain.html

❖ First rowhammer paper:  
https://users.ece.cmu.edu/~yoonguk/papers/kim-
isca14.pdf

❖ Latest non-uniform, frequency-based exploit:
https://comsec.ethz.ch/research/dram/blacksmith/

❖ Wikipedia:  https://en.wikipedia.org/wiki/Row_hammer
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https://vvdveen.com/publications/drammer.pdf
https://googleprojectzero.blogspot.com/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://users.ece.cmu.edu/~yoonguk/papers/kim-isca14.pdf
https://comsec.ethz.ch/research/dram/blacksmith/
https://en.wikipedia.org/wiki/Row_hammer

