
CSE351, Autumn 2021L23: Virtual Memory II

Virtual Memory II
CSE 351 Autumn 2021

Instructor: Teaching Assistants:

Justin Hsia Allie Pfleger Anirudh Kumar Assaf Vayner
Atharva Deodhar Celeste Zeng Dominick Ta
Francesca Wang Hamsa Shankar Isabella Nguyen
Joy Dang Julia Wang Maggie Jiang
Monty Nitschke Morel Fotsing Sanjana Chintalapati

http://xkcd.com/1831/

http://xkcd.com/1831/

CSE351, Autumn 2021L23: Virtual Memory II

Relevant Course Information

❖ hw22 due Friday (11/26)

❖ hw23 due next Wednesday (12/1)

▪ Another double-lecture hw

❖ Lab 4 due Monday (11/29)

❖ Virtual section this week on virtual memory (videos)

❖ Office hour changes will be posted on Ed tonight

❖ Looking ahead

▪ Final Dec. 13-15, regrade requests Dec. 18-19

▪ Check your grades in Canvas as we go
2

CSE351, Autumn 2021L23: Virtual Memory II

A System Using Physical Addressing

3

❖ Used in “simple” systems with (usually) just one process:
▪ Embedded microcontrollers in devices like cars, elevators, and digital

picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address (PA)

Data (int/float)

8: ...

0x4

CSE351, Autumn 2021L23: Virtual Memory II

A System Using Virtual Addressing

4

❖ Physical addresses are completely invisible to programs
▪ Used in all modern desktops, laptops, servers, smartphones…

▪ One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data (int/float)

8: ...

CPU

Virtual address
(VA)

CPU Chip

0x40x4100

Memory Management Unit

CSE351, Autumn 2021L23: Virtual Memory II

Why Virtual Memory (VM)?

❖ Efficient use of limited main memory (RAM)
▪ Use RAM as a cache for the parts of a virtual address space

• Some non-cached parts stored on disk

• Some (unallocated) non-cached parts stored nowhere

▪ Keep only active areas of virtual address space in memory

• Transfer data back and forth as needed

❖ Simplifies memory management for programmers
▪ Each process “gets” the same full, private linear address space

❖ Isolates address spaces (protection)
▪ One process can’t interfere with another’s memory

• They operate in different address spaces

▪ User process cannot access privileged information

• Different sections of address spaces have different permissions

5

CSE351, Autumn 2021L23: Virtual Memory II

Reading Review

❖ Terminology:

▪ Paging: page size (𝑃), page offset width (𝑝) virtual page
number (VPN), physical page numbers (PPN)

▪ Page table (PT): page table entry (PTE), access rights (read,
write, execute)

❖ Questions from the Reading?

6

CSE351, Autumn 2021L23: Virtual Memory II

Review Questions

❖ Which terms from caching are most similar/analogous
to the new virtual memory terms?

▪ page size

▪ page offset width

▪ virtual page number

▪ physical page number

▪ page table entry

▪ access rights

7

CSE351, Autumn 2021L23: Virtual Memory II

VM and the Memory Hierarchy

❖ Think of memory (virtual or physical) as an array of bytes, now
split into pages
▪ Pages are another unit of aligned memory (size is P = 2𝑝 bytes)

▪ Each virtual page can be stored in any physical page (no fragmentation!)

❖ Pages of virtual memory are usually stored in physical memory,
but sometimes spill to disk

8

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Unallocated

0

2n-1

PP 2m-p-1

Physical memory

Empty

Empty

PP 0

PP 1

Empty

2m-1

0

V
ir

tu
al

 p
ag

es
 (

V
P

's
)

Disk

P
h

ysical p
ages (P

P
's)

“Swap Space”

CSE351, Autumn 2021L23: Virtual Memory II

Memory Hierarchy: Core 2 Duo

9

DiskMain
Memory

L2
unified
cache

L1
I-cache

L1
D-cache

CPU Reg

2 B/cycle8 B/cycle16 B/cycle 1 B/30 cyclesThroughput:

Latency: 100 cycles14 cycles3 cycles millions

~4 MB

32 KB

~8 GB ~500 GB

Not drawn to scale

Miss Penalty
(latency)

33x

Miss Penalty
(latency)
10,000x

SRAM
Static Random Access Memory

DRAM
Dynamic Random Access Memory

CSE351, Autumn 2021L23: Virtual Memory II

Virtual Memory Design Consequences

❖ Large page size: typically 4-8 KiB or 2-4 MiB
▪ Can be up to 1 GiB (for “Big Data” apps on big computers)

▪ Compared with 64-byte cache blocks

❖ Fully associative
▪ Any virtual page can be placed in any physical page

▪ Requires a “large” mapping function – different from CPU caches

❖ Highly sophisticated, expensive replacement algorithms in OS
▪ Too complicated and open-ended to be implemented in hardware

❖ Write-back rather than write-through
▪ Really don’t want to write to disk every time we modify memory

▪ Some things may never end up on disk (e.g., stack for short-lived
process)

10

CSE351, Autumn 2021L23: Virtual Memory II

Why does VM work on RAM/disk?

❖ Avoids disk accesses because of locality

▪ Same reason that L1 / L2 / L3 caches work

❖ The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

▪ If (working set of one process ≤ physical memory):
• Good performance for one process (after compulsory misses)

▪ If (working sets of all processes > physical memory):
• Thrashing: Performance meltdown where pages are swapped

between memory and disk continuously (CPU always waiting or
paging)

• This is why your computer can feel faster when you add RAM

11

CSE351, Autumn 2021L23: Virtual Memory II

Virtual Memory (VM)

❖ Overview and motivation

❖ VM as a tool for caching

❖ Address translation

❖ VM as a tool for memory management

❖ VM as a tool for memory protection

12

CSE351, Autumn 2021L23: Virtual Memory II

Address Translation

13

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data (int/float)

8: ...

CPU

Virtual address
(VA)

CPU Chip

0x40x4100

Memory Management Unit

How do we perform the virtual
→ physical address translation?

CSE351, Autumn 2021L23: Virtual Memory II

Address Translation: Page Tables

❖ CPU-generated address can be split into:

▪ Request is Virtual Address (VA), want Physical Address (PA)

▪ Note that Physical Offset = Virtual Offset (page-aligned)

❖ Use lookup table that we call the page table (PT)

▪ Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

▪ Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g., Valid, Dirty, access rights)

▪ Has an entry for every virtual page

14

Virtual Page Number Page Offset𝑛-bit address:

CSE351, Autumn 2021L23: Virtual Memory II

Page Table Diagram

❖ Page tables stored in physical memory
▪ Too big to fit elsewhere – managed by MMU & OS

❖ How many page tables in the system?
▪ One per process

15

Page Table
(DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0: 0

PTE 7: 7

PTE 1: 1

PTE 2: 2

PTE 3: 3

PTE 4: 4

PTE 5: 5

PTE 6: 6

......

Virtual memory
(DRAM/disk)

VP 6

VP 3

Virtual page #

Physical memory
(DRAM)

PP 0

PP 3

PP 2

PP 1

VP 1

VP 2

VP 7

VP 4

Physical page #
is page in RAM?

CSE351, Autumn 2021L23: Virtual Memory II

CPU

Page Table Address Translation

16

Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (VA)

Physical address (PA)

Valid PPN

Page table
base register

(PTBR)

Page table Page table address
for process

Valid bit = 0:
page not in memory

(page fault)

In most cases, the MMU can
perform this translation

without software assistance

CSE351, Autumn 2021L23: Virtual Memory II

Polling Question

❖ How many bits wide are the following fields?

▪ 16 KiB pages

▪ 48-bit virtual addresses

▪ 16 GiB physical memory

▪ Vote in Ed Lessons

17

34 24(A)

32 18(B)

30 20(C)

34 20(D)

VPN PPN

CSE351, Autumn 2021L23: Virtual Memory II

Page Hit

❖ Page hit: VM reference is in physical memory

18

Page Table (DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Virtual address

Example: Page size = 4 KiB

0x00740bVirtual Addr:

VPN: PPN:

Physical Addr:

Physical memory
(DRAM)

PP 0

PP 3

VP 1

VP 2

VP 7

VP 4

Virtual memory
(DRAM/disk)

VP 6

VP 3

CSE351, Autumn 2021L23: Virtual Memory II

Page Fault

❖ Page fault: VM reference is NOT in physical memory

19

Page Table (DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Physical memory
(DRAM)

PP 0

PP 3

VP 1

VP 2

VP 7

VP 4

Virtual memory
(DRAM/disk)

VP 6

VP 3

Virtual address

Example: Page size = 4 KiB
Provide a virtual address request (in hex) that
results in this particular page fault:

Virtual Addr:

CSE351, Autumn 2021L23: Virtual Memory II

Reminder: Page Fault Exception

❖ User writes to memory location

❖ That portion (page) of user’s memory
is currently on disk

❖ Page fault handler must load page into physical memory

❖ Returns to faulting instruction: mov is executed again!

▪ Successful on second try
20

int a[1000];

int main () {

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code OS Kernel code

exception: page fault

Create page and
load into memoryreturns

movl
handle_page_fault:

CSE351, Autumn 2021L23: Virtual Memory II

Handling a Page Fault

❖ Page miss causes page fault (an exception)

21

Page Table (DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Physical memory
(DRAM)

PP 0

PP 3

VP 1

VP 2

VP 7

VP 4

Virtual memory
(DRAM/disk)

VP 6

VP 3

Virtual address

CSE351, Autumn 2021L23: Virtual Memory II

Handling a Page Fault

❖ Page miss causes page fault (an exception)

❖ Page fault handler selects a victim to be evicted (here VP 4)

22

Page Table (DRAM)

null

null

0
1

0

0
1
1
0
1

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Physical memory
(DRAM)

PP 0

PP 3

VP 1

VP 2

VP 7

VP 4

Virtual memory
(DRAM/disk)

VP 6

VP 3

Virtual address

CSE351, Autumn 2021L23: Virtual Memory II

Handling a Page Fault

❖ Page miss causes page fault (an exception)

❖ Page fault handler selects a victim to be evicted (here VP 4)

23

Page Table (DRAM)

null

null

0
1

0

0
1
1
1
0

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Physical memory
(DRAM)

PP 0

PP 3

VP 1

VP 2

VP 7

VP 3

Virtual memory
(DRAM/disk)

VP 4

VP 6

Virtual address

CSE351, Autumn 2021L23: Virtual Memory II

Handling a Page Fault

❖ Page miss causes page fault (an exception)

❖ Page fault handler selects a victim to be evicted (here VP 4)

❖ Offending instruction is restarted: page hit!

24

Page Table (DRAM)

null

null

0
1

0

0
1
1
1
0

Valid PPN/Disk Addr
PTE 0

PTE 7
......

Physical memory
(DRAM)

PP 0

PP 3

VP 1

VP 2

VP 7

VP 3

Virtual memory
(DRAM/disk)

VP 4

VP 6

Virtual address

CSE351, Autumn 2021L23: Virtual Memory II

Virtual Memory (VM)

❖ Overview and motivation

❖ VM as a tool for caching

❖ Address translation

❖ VM as a tool for memory management

❖ VM as a tool for memory protection

25

CSE351, Autumn 2021L23: Virtual Memory II

VM for Managing Multiple Processes

❖ Key abstraction: each process has its own virtual address space
▪ It can view memory as a simple linear array

❖ With virtual memory, this simple linear virtual address space
need not be contiguous in physical memory
▪ Process needs to store data in another VP? Just map it to any PP!

26

Virtual
Address

Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address

Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

CSE351, Autumn 2021L23: Virtual Memory II

Simplifying Linking and Loading

❖ Linking
▪ Each program has similar virtual

address space

▪ Code, Data, and Heap always
start at the same addresses

❖ Loading
▪ execve allocates virtual pages

for .text and .data sections
& creates PTEs marked as invalid

▪ The .text and .data sections
are copied, page by page, on
demand by the virtual memory
system

27

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp

(stack
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded
from the
executable
file

CSE351, Autumn 2021L23: Virtual Memory II

VM for Protection and Sharing

❖ The mapping of VPs to PPs provides a simple mechanism to
protect memory and to share memory between processes
▪ Sharing: map virtual pages in separate address spaces to the same

physical page (here: PP 6)

▪ Protection: process can’t access physical pages to which none of its
virtual pages are mapped (here: Process 2 can’t access PP 2)

28

Virtual
Address

Space for
Process 1:

Physical
Address
Space
(DRAM)

0

N-1

(e.g., read-only
library code)

Virtual
Address

Space for
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address
translation

CSE351, Autumn 2021L23: Virtual Memory II

Memory Protection Within Process

❖ VM implements read/write/execute permissions

▪ Extend page table entries with permission bits

▪ MMU checks these permission bits on every memory access
• If violated, raises exception and OS sends SIGSEGV signal to process

(segmentation fault)

29

•
•
•

Physical
Address Space

PP 2

PP 4

PP 6

PP 8
PP 9

PP 11

Process i: PPNWRITE EXEC

PP 6No No

PP 4No Yes

PP 2Yes No

READ

Yes

Yes

Yes

VP 0:

VP 1:

VP 2:

Yes

Yes

Yes

Valid

Process j: WRITE EXEC

PP 9Yes No

PP 6No No

PP 11Yes No

READ

Yes

Yes

Yes

VP 0:

VP 1:

VP 2:

Yes

Yes

Yes

Valid PPN

CSE351, Autumn 2021L23: Virtual Memory II

Memory Review Question

❖ What should the permission bits be for pages from
the following sections of virtual memory?

30

Section Read Write Execute

Stack

Heap

Static Data

Literals

Instructions

