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Relevant Course Information

❖ hw22 due Friday (11/26)

❖ hw23 due next Wednesday (12/1)

▪ Another double-lecture hw

❖ Lab 4 due Monday (11/29)

❖ Virtual section this week on virtual memory (videos)

❖ Office hour changes will be posted on Ed tonight

❖ Looking ahead

▪ Final Dec. 13-15, regrade requests Dec. 18-19

▪ Check your grades in Canvas as we go
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A System Using Physical Addressing
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❖ Used in “simple” systems with (usually) just one process:
▪ Embedded microcontrollers in devices like cars, elevators, and digital 

picture frames
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A System Using Virtual Addressing
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❖ Physical addresses are completely invisible to programs
▪ Used in all modern desktops, laptops, servers, smartphones…

▪ One of the great ideas in computer science
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Why Virtual Memory (VM)?

❖ Efficient use of limited main memory (RAM)
▪ Use RAM as a cache for the parts of a virtual address space

• Some non-cached parts stored on disk

• Some (unallocated) non-cached parts stored nowhere

▪ Keep only active areas of virtual address space in memory

• Transfer data back and forth as needed

❖ Simplifies memory management for programmers
▪ Each process “gets” the same full, private linear address space

❖ Isolates address spaces (protection)
▪ One process can’t interfere with another’s memory

• They operate in different address spaces

▪ User process cannot access privileged information

• Different sections of address spaces have different permissions
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Reading Review

❖ Terminology:

▪ Paging:  page size (𝑃), page offset width (𝑝) virtual page 
number (VPN), physical page numbers (PPN)

▪ Page table (PT):  page table entry (PTE), access rights (read, 
write, execute)

❖ Questions from the Reading?
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Review Questions

❖ Which terms from caching are most similar/analogous 
to the new virtual memory terms?

▪ page size

▪ page offset width

▪ virtual page number

▪ physical page number

▪ page table entry

▪ access rights
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VM and the Memory Hierarchy

❖ Think of memory (virtual or physical) as an array of bytes, now 
split into pages
▪ Pages are another unit of aligned memory (size is P = 2𝑝 bytes)

▪ Each virtual page can be stored in any physical page (no fragmentation!)

❖ Pages of virtual memory are usually stored in physical memory, 
but sometimes spill to disk
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Memory Hierarchy:  Core 2 Duo
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Virtual Memory Design Consequences

❖ Large page size:  typically 4-8 KiB or 2-4 MiB
▪ Can be up to 1 GiB (for “Big Data” apps on big computers)

▪ Compared with 64-byte cache blocks

❖ Fully associative
▪ Any virtual page can be placed in any physical page

▪ Requires a “large” mapping function – different from CPU caches

❖ Highly sophisticated, expensive replacement algorithms in OS
▪ Too complicated and open-ended to be implemented in hardware

❖ Write-back rather than write-through
▪ Really don’t want to write to disk every time we modify memory

▪ Some things may never end up on disk (e.g., stack for short-lived 
process)
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Why does VM work on RAM/disk?

❖ Avoids disk accesses because of locality

▪ Same reason that L1 / L2 / L3 caches work

❖ The set of virtual pages that a program is “actively” 
accessing at any point in time is called its working set

▪ If (working set of one process ≤ physical memory):
• Good performance for one process (after compulsory misses)

▪ If (working sets of all processes > physical memory):
• Thrashing: Performance meltdown where pages are swapped 

between memory and disk continuously (CPU always waiting or 
paging)

• This is why your computer can feel faster when you add RAM
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Virtual Memory (VM)

❖ Overview and motivation

❖ VM as a tool for caching

❖ Address translation

❖ VM as a tool for memory management

❖ VM as a tool for memory protection
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Address Translation
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Address Translation:  Page Tables

❖ CPU-generated address can be split into:

▪ Request is Virtual Address (VA), want Physical Address (PA)

▪ Note that Physical Offset = Virtual Offset  (page-aligned)

❖ Use lookup table that we call the page table (PT)

▪ Replace Virtual Page Number (VPN) for Physical Page 
Number (PPN) to generate Physical Address

▪ Index PT using VPN:  page table entry (PTE) stores the PPN 
plus management bits (e.g., Valid, Dirty, access rights)

▪ Has an entry for every virtual page

14
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Page Table Diagram

❖ Page tables stored in physical memory
▪ Too big to fit elsewhere – managed by MMU & OS

❖ How many page tables in the system?
▪ One per process
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CPU

Page Table Address Translation
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Polling Question

❖ How many bits wide are the following fields?

▪ 16 KiB pages

▪ 48-bit virtual addresses

▪ 16 GiB physical memory

▪ Vote in Ed Lessons
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Page Hit

❖ Page hit: VM reference is in physical memory
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Page Fault

❖ Page fault: VM reference is NOT in physical memory 
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Reminder: Page Fault Exception

❖ User writes to memory location

❖ That portion (page) of user’s memory 
is currently on disk

❖ Page fault handler must load page into physical memory

❖ Returns to faulting instruction:  mov is executed again!

▪ Successful on second try
20

int a[1000];

int main () {

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code OS Kernel code

exception: page fault
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Handling a Page Fault

❖ Page miss causes page fault (an exception)
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Handling a Page Fault

❖ Page miss causes page fault (an exception)

❖ Page fault handler selects a victim to be evicted (here VP 4)
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Handling a Page Fault

❖ Page miss causes page fault (an exception)

❖ Page fault handler selects a victim to be evicted (here VP 4)
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Handling a Page Fault

❖ Page miss causes page fault (an exception)

❖ Page fault handler selects a victim to be evicted (here VP 4)

❖ Offending instruction is restarted:  page hit!
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Virtual Memory (VM)

❖ Overview and motivation

❖ VM as a tool for caching

❖ Address translation

❖ VM as a tool for memory management

❖ VM as a tool for memory protection
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VM for Managing Multiple Processes

❖ Key abstraction: each process has its own virtual address space
▪ It can view memory as a simple linear array

❖ With virtual memory, this simple linear virtual address space 
need not be contiguous in physical memory
▪ Process needs to store data in another VP? Just map it to any PP!
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Simplifying Linking and Loading

❖ Linking 
▪ Each program has similar virtual 

address space

▪ Code, Data, and Heap always 
start at the same addresses

❖ Loading 
▪ execve allocates virtual pages 

for .text and .data sections 
& creates PTEs marked as invalid

▪ The .text and .data sections 
are copied, page by page, on 
demand by the virtual memory 
system
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VM for Protection and Sharing

❖ The mapping of VPs to PPs provides a simple mechanism to 
protect memory and to share memory between processes
▪ Sharing: map virtual pages in separate address spaces to the same 

physical page (here: PP 6)

▪ Protection: process can’t access physical pages to which none of its 
virtual pages are mapped (here:  Process 2 can’t access PP 2)
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Memory Protection Within Process

❖ VM implements read/write/execute permissions

▪ Extend page table entries with permission bits

▪ MMU checks these permission bits on every memory access
• If violated, raises exception and OS sends SIGSEGV signal to process

(segmentation fault)
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Memory Review Question

❖ What should the permission bits be for pages from 
the following sections of virtual memory?
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