Processes II, Virtual Memory I

CSE 351 Autumn 2021

Instructor:

Justin Hsia

Teaching Assistants:

Allie Pfleger Anirudh Kumar Assaf Vayner Atharva Deodhar Celeste Zeng Dominick Ta Francesca Wang Hamsa Shankar Isabella Nguyen Joy Dang Julia Wang Maggie Jiang Monty Nitschke **Morel Fotsing** Sanjana Chintalapati

WHY EVERYTHING I HAVE IS BROKEN

https://xkcd.com/1495/

Relevant Course Information

- hw21 due Monday (11/22)
- hw22 due Friday (11/26)
 - Extra days to work, but probably want to finish by 11/24
- Lab 4 due Monday after Thanksgiving (11/29)

Fork Example

```
void fork1() {
  int x = 1;
  pid_t fork_ret = fork();
  if (fork_ret == 0)
     printf("Child has x = %d\n", ++x);
  else
     printf("Parent has x = %d\n", --x);
  printf("Bye from process %d with x = %d\n", getpid(), x);
}
```

- Both processes continue/start execution after fork
 - Child starts at instruction after the call to fork (storing into pid)
- Can't predict execution order of parent and child
- Both processes start with x = 1
 - Subsequent changes to x are independent
- Shared open files: stdout is the same in both parent and child

Modeling fork with Process Graphs

- A process graph is a useful tool for capturing the partial ordering of statements in a concurrent program
 - Each vertex is the execution of a statement
 - a → b means a happens before b
 - Edges can be labeled with current value of variables
 - printf vertices can be labeled with output
 - Each graph begins with a vertex with no inedges
- Any topological sort of the graph corresponds to a feasible total ordering
 - Total ordering of vertices where all edges point from left to right

Fork Example: Possible Output

```
void fork1() {
   int x = 1;
   pid_t fork_ret = fork();
   if (fork_ret == 0)
        printf("Child has x = %d\n", ++x);
   else
        printf("Parent has x = %d\n", --x);
   printf("Bye from process %d with x = %d\n", getpid(), x);
}
```


Polling Question

- Are the following sequences of outputs possible?
 - Vote in Ed Lessons

```
void nestedfork() {
    printf("L0\n");
    if (fork() == 0) {
        printf("L1\n");
        if (fork() == 0) {
            printf("L2\n");
        }
     }
    printf("Bye\n");
}
```

	Seq 1:	Seq 2:
	LO	LO
	L1	Bye
	Bye	L1
	Bye	L2
	Bye	Bye
	L2	Bye
١.	No	No
3.	No	Yes
	Yes	No
).	Yes	Yes
	We're lost	

Reading Review

- Terminology:
 - exec*(), exit(), wait(), waitpid()
 - init/systemd, reaping, zombie processes
 - Virtual memory: virtual vs. physical addresses and address space, swap space
- Questions from the Reading?

Fork-Exec

Note: the return values of fork and exec* should be checked for errors

- fork-exec model:
 - fork() creates a copy of the current process
 - exec* () replaces the current process' code and address space with the code for a different program
 - Whole family of exec calls see exec (3) and execve (2)

Exec-ing a new program

execve Example

This is extra (non-testable) material

Execute "/usr/bin/ls -1 lab4" in child process using current environment:

```
= NULL
                myarqv[arqc]
                                         → "lab4"
                myargv[2]
(argc == 3)
                                         → "-l"
                myargv[1]
                                         → "/usr/bin/ls"
                myargv[0]
  myarqv
                envp[n] = NULL
                envp[n-1]
                                    → "PWD=/homes/iws/jhsia"
                envp[0]
                                    → "USER=jhsia"
 environ
```

```
if ((pid = fork()) == 0) {  /* Child runs program */
   if (execve(myargv[0], myargv, environ) < 0) {
      printf("%s: Command not found.\n", myargv[0]);
      exit(1);
   }
}</pre>
```

Run the printenv command in a Linux shell to see your own environment variables

Processes

- Processes and context switching
- Creating new processes
 - fork() and exec*()
- Ending a process
 - exit(), wait(), waitpid()
 - Zombies

exit: Ending a process

- * void exit(int status)
 - Explicitly exits a process
 - Status code: 0 is used for a normal exit, nonzero for abnormal exit
- The return statement from main() also ends a process in C
 - The return value is the status code

Zombies

- A terminated process still consumes system resources
 - Various tables maintained by OS
 - Called a "zombie" (a living corpse, half alive and half dead)
- Reaping is performed by parent on terminated child
 - Parent is given exit status information and kernel then deletes zombie child process
 - In long-running processes (e.g., shells, servers) we need explicit reaping
- If parent terminates without reaping a child, then the orphaned child will be reaped by init process (pid 1)
 - Note: on recent Linux systems, init has been renamed systemd

wait: Synchronizing with Children

- * int wait(int* child_status)
 - Suspends current process (i.e., the parent) until one of its children terminates
 - Return value is the PID of the child process that terminated
 - On successful return, the child process is reaped
 - If child_status != NULL, then the *child_status value indicates why the child process terminated
 - Special macros for interpreting this status see man wait (2)
- Note: If parent process has multiple children, wait will return when any of the children terminates
 - waitpid can be used to wait on a specific child process

wait: Synchronizing with Children

```
void fork_wait() {
   int child_status;

if (fork() == 0) {
     printf("HC: hello from child\n");
     exit(0);
} else {
     printf("HP: hello from parent\n");
     wait(&child_status);
     printf("CT: child has terminated\n");
}
printf("Bye\n");
}
```


Example: Zombie

```
linux> ./forks 7 &
[1] 6639
Running Parent, PID = 6639
Terminating Child, PID = 6640
linux> ps
  PID TTY
                    TIME CMD
 6585 ttyp9
               00:00:00 tcsh
 6639 ttyp9
               00:00:03 forks
               00:00:00 forks <defunct>
 6640 ttyp9
               00:00:00 ps
 6641 ttyp9
linux> kill 6639
   Terminated
\lceil 1 \rceil
linux> ps
  PID TTY
                    TIME CMD
 6585 ttyp9
               00:00:00 tcsh
 6642 ttyp9
               00:00:00 ps
```

ps shows child process as "defunct"

Killing parent allows child to be reaped by init

Example: Non-terminating Child

```
linux> ./forks 8
Terminating Parent, PID = 6675
Running Child, PID = 6676
linux> ps
 PID TTY
                   TIME CMD
 6585 ttyp9
               00:00:00 tcsh
               00:00:06 forks
 6676 ttyp9
               00:00:00 ps
 6677 ttyp9
linux> kill 6676 ←
linux> ps
                   TIME CMD
 PID TTY
 6585 ttyp9
               00:00:00 tcsh
 6678 ttyp9
               00:00:00 ps
```

- Child process still active even though parent has terminated
- Must kill explicitly, or else will keep running indefinitely

Process Management Summary

- fork makes two copies of the same process (parent & child)
 - Returns different values to the two processes
- exec* replaces current process from file (new program)
 - Two-process program:
 - First fork()
 - if (pid == 0) { /* child code */ } else { /* parent code */ }
 - Two different programs:
 - First fork()
 - if (pid == 0) { execv(...) } else { /* parent code */ }
- exit or return from main to end a process
- wait or waitpid used to synchronize parent/child execution and to reap child process

The Hardware/Software Interface

- Topic Group 3: Scale & Coherence
 - Caches, Processes, Virtual Memory, Memory Allocation

- How do we maintain logical consistency in the face of more data and more processes?
 - How do we support control flow both within many processes and things external to the computer?
 - How do we support data access, including dynamic requests, across multiple processes?

Virtual Memory (VM*)

- Overview and motivation
- VM as a tool for caching
- Address translation
- VM as a tool for memory management
- VM as a tool for memory protection

Warning: Virtual memory is pretty complex, but crucial for understanding how processes work and for debugging performance

^{*}Not to be confused with "Virtual Machine" which is a whole other thing.

Memory as we know it so far... is virtual!

- Programs refer to virtual memory addresses
 - movq (%rdi),%rax
 - Conceptually memory is just a very large array of bytes
 - System provides private address space to each process
- Allocation: Compiler and run-time system
 - Where different program objects should be stored
 - All allocation within single virtual address space
- But...
 - We probably don't have 2^w bytes of physical memory
 - We certainly don't have 2^w bytes of physical memory for every process
 - Processes should not interfere with one another
 - Except in certain cases where they want to share code or data

Problem 1: How Does Everything Fit?

Problem 2: Memory Management

Problem 3: How To Protect

Physical main memory

Problem 4: How To Share?

Physical main memory

How can we solve these problems?

* "Any problem in computer science can be solved by adding another level of indirection." – David Wheeler, inventor of the subroutine

Without Indirection
With Indirection
With Indirection
P1
P2
NewThing
NewThing
NewThing
NewThing

What if I want to move Thing?

Indirection

- Indirection: The ability to reference something using a name, reference, or container instead of the value itself. A flexible mapping between a name and a thing allows changing the thing without notifying holders of the name.
 - Adds some work (now have to look up 2 things instead of 1)
 - But don't have to track all uses of name/address (single source!)

Examples:

- Phone system: cell phone number portability
- Domain Name Service (DNS): translation from name to IP address
- Call centers: route calls to available operators, etc.
- Dynamic Host Configuration Protocol (DHCP): local network address assignment

Indirection in Virtual Memory

- Each process gets its own private virtual address space
- Solves the previous problems!

Address Spaces

- * Virtual address space: Set of $N = 2^n$ virtual addr
 - {0, 1, 2, 3, ..., N-1}
- * Physical address space: Set of $M = 2^m$ physical addr
 - {0, 1, 2, 3, ..., M-1}

- Every byte in main memory has:
 - one physical address (PA)
 - zero, one, or more virtual addresses (VAs)

Polling Questions

On a 64-bit machine currently running 8 processes, how much virtual memory is there?

True or False: A 32-bit machine with 8 GiB of RAM installed would never use all of it (in theory).

Mapping

- A virtual address (VA) can be mapped to either physical memory or disk
 - Unused VAs may not have a mapping
 - VAs from different processes may map to same location in memory/disk

Summary

- Virtual memory provides:
 - Ability to use limited memory (RAM) across multiple processes
 - Illusion of contiguous virtual address space for each process
 - Protection and sharing amongst processes

BONUS SLIDES

Detailed examples:

- Consecutive forks
- wait() example
- waitpid() example

Example: Two consecutive forks

```
void fork2() {
    printf("L0\n");
    fork();
    printf("L1\n");
    fork();
    printf("Bye\n");
}
```


Feasible output:

L0

L1

Bye

Bye

L1

Bye

L1

Bye

L1

Bye

Bye

L1

Bye

Bye

Bye

Bye

Bye

Bye

Bye

Example: Three consecutive forks

Both parent and child can continue forking

```
void fork3() {
    printf("L0\n");
    fork();
    printf("L1\n");
    fork();
    printf("L2\n");
    fork();
    printf("Bye\n");
}
```


wait() Example

- If multiple children completed, will take in arbitrary order
- Can use macros WIFEXITED and WEXITSTATUS to get information about exit status

```
void fork10() {
  pid t pid[N];
   int i;
   int child status;
   for (i = 0; i < N; i++)
      if ((pid[i] = fork()) == 0)
         exit(100+i); /* Child */
   for (i = 0; i < N; i++) {
      pid t wpid = wait(&child status);
      if (WIFEXITED(child status))
         printf("Child %d terminated with exit status %d\n",
                wpid, WEXITSTATUS(child status));
      else
         printf("Child %d terminated abnormally\n", wpid);
```

waitpid(): Waiting for a Specific Process

pid_t waitpid(pid_tpid,int &status,int options)

- suspends current process until specific process terminates
- various options (that we won't talk about)

```
void fork11() {
   pid t pid[N];
   int i;
   int child status;
   for (i = 0; i < N; i++)
      if ((pid[i] = fork()) == 0)
         exit(100+i); /* Child */
   for (i = 0; i < N; i++) {
      pid t wpid = waitpid(pid[i], &child status, 0);
      if (WIFEXITED(child status))
         printf("Child %d terminated with exit status %d\n",
                wpid, WEXITSTATUS(child status));
      else
         printf("Child %d terminated abnormally\n", wpid);
```