
CSE351, Autumn 2021L21: Processes I

Processes I
CSE 351 Autumn 2021

Instructor:
Justin Hsia

Teaching Assistants:
Allie Pfleger
Anirudh Kumar
Assaf Vayner
Atharva Deodhar
Celeste Zeng
Dominick Ta
Francesca Wang
Hamsa Shankar
Isabella Nguyen
Joy Dang
Julia Wang
Maggie Jiang
Monty Nitschke
Morel Fotsing
Sanjana Chintalapati

h
tt

p
:/

/r
eb

rn
.c

o
m

/r
e/

b
ad

-c
h

ro
m

e-
1

1
6

2
0

8
2

/

http://rebrn.com/re/bad-chrome-1162082/

CSE351, Autumn 2021L21: Processes I

Relevant Course Information

❖ Hw19 due tonight

❖ hw20 due Friday (11/19)

▪ Lab 4 preparation!

❖ hw21 due Monday (11/22)

❖ Lab 4 due Monday after Thanksgiving (11/29)

2

CSE351, Autumn 2021L21: Processes I

AMAT, Revisited

❖ Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses

AMAT = Hit time + Miss rate × Miss penalty

(abbreviated AMAT = HT + MR × MP)

❖ We called this a cache performance metric

▪ This isn’t the only metric we could have used!

3

CSE351, Autumn 2021L21: Processes I

Metrics in Computing

❖ Generally, folks care most about performance

▪ Energy-efficiency is more important now since the plateau in
2004/2005

▪ This is why we have so many specialized chips nowadays

❖ Really, this is just efficiency – making efficient use of
the resources that we have

▪ Performance: cycles/instruction, seconds/program

▪ Energy efficiency: performance/watt

▪ Memory: bytes/program, bytes/data structure

4

CSE351, Autumn 2021L21: Processes I

Metrics

❖ What do we do with metrics?

▪ We tend to optimize along them!

▪ Especially when jobs/funding depend on better performance
along some metric
• See all of Intel under “Moore’s Law”

❖ Sometimes, strange incentives emerge

▪ “Minimize the number of bugs on our dashboard”
• Does it count if we make the bugs invisible?

▪ “Make this faster for our demo in a week”
• Shortcuts might hurt performance at scale

▪ “Minimize our average memory access time”
• What if we add more memory accesses that we know will hit?

5

CSE351, Autumn 2021L21: Processes I

Metrics and Success

❖ Success is defined along metrics

▪ This affects how we measure and optimize

❖ Let’s say that we choose performance/program or
performance/program set (i.e., benchmarks):

1. Measure existing performance

2. Come up with a bunch of optimizations that would
improve performance

3. Select a few to build into the “next version”

6

CSE351, Autumn 2021L21: Processes I

Metrics and Success

❖ Success is defined along metrics

▪ This affects how we measure and optimize

❖ Let’s say that we choose profit/year or stock price:

▪ Success means earning more profit than last year

▪ Improvement or optimizations might include:
• Reduce expenses, cut staff

• Sell more things or fancier things (e.g., in-app purchases)

• Make people pay monthly for things they could get for free

• Increase advertising revenue:

7

CSE351, Autumn 2021L21: Processes I

Metrics and Success

❖ Success is defined along metrics

▪ This affects how we measure and optimize

❖ Let’s say that we choose minoritized participation in
computing:

▪ What does success/participation mean (and dangers)?
• Women? BIPOC? All minoritized lumped together?

– Might optimize for one group at the expense of others

• Taking intro? Passing intro? Getting a degree? Getting a job?

– Says nothing about retention or participation/decision-making level

8

CSE351, Autumn 2021L21: Processes I

Design Considerations

❖ Regardless of what we build, the way that we define
success shapes the systems we build

▪ Choose your metrics carefully

▪ There’s more to choose from than performance
(e.g., usability, access, simplicity, agency)

❖ Metrics are a “heading” (in the navigational sense)

▪ Best to reevaluate from time to time in case you’re off
course or your destination changes

9

CSE351, Autumn 2021L21: Processes I

❖ Topic Group 3: Scale & Coherence

▪ Caches, Processes, Virtual Memory,
Memory Allocation

❖ How do we maintain logical consistency in the face of
more data and more processes?

▪ How do we support control flow both within many
processes and things external to the computer?

▪ How do we support data access, including dynamic requests,
across multiple processes?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

10

⋮

CSE351, Autumn 2021L21: Processes I

Reading Review

❖ Terminology:

▪ Exceptional control flow, event handlers

▪ Operating system kernel

▪ Exceptions: interrupts, traps, faults, aborts

▪ Processes: concurrency, context switching, fork-exec model,
process ID

❖ Questions from the Reading?

11

CSE351, Autumn 2021L21: Processes I

Leading Up to Processes

❖ System Control Flow

▪ Control flow

▪ Exceptional control flow

▪ Asynchronous exceptions (interrupts)

▪ Synchronous exceptions (traps & faults)

12

CSE351, Autumn 2021L21: Processes I

Control Flow

❖ So far: we’ve seen how the flow of control changes
as a single program executes

❖ Reality: multiple programs running concurrently

▪ How does control flow across the many components of the
system?

▪ In particular: More programs running than CPUs

❖ Exceptional control flow is basic mechanism used for:

▪ Transferring control between processes and OS

▪ Handling I/O and virtual memory within the OS

▪ Implementing multi-process apps like shells and web servers

▪ Implementing concurrency
13

CSE351, Autumn 2021L21: Processes I

Control Flow

❖ Processors do only one thing:

▪ From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

▪ This sequence is the CPU’s control flow (or flow of control)

14

<startup>
instr1

instr2

instr3

…
instrn

<shutdown>

Physical control flow

time

CSE351, Autumn 2021L21: Processes I

Altering the Control Flow

❖ Up to now, two ways to change control flow:
▪ Jumps (conditional and unconditional)

▪ Call and return

▪ Both react to changes in program state

❖ Processor also needs to react to changes in system state
▪ Unix/Linux user hits “Ctrl-C” at the keyboard

▪ User clicks on a different application’s window on the screen

▪ Data arrives from a disk or a network adapter

▪ Instruction divides by zero

▪ System timer expires

❖ Can jumps and procedure calls achieve this?
▪ No – the system needs mechanisms for “exceptional” control flow!

15

CSE351, Autumn 2021L21: Processes I

Exceptional Control Flow

❖ Exists at all levels of a computer system

❖ Low level mechanisms
▪ Exceptions

• Change in processor’s control flow in response to a system event
(i.e., change in system state, user-generated interrupt)

• Implemented using a combination of hardware and OS software

❖ Higher level mechanisms
▪ Process context switch

• Implemented by OS software and hardware timer

▪ Signals

• Implemented by OS software

• We won’t cover these – see CSE451 and EE/CSE474

16

CSE351, Autumn 2021L21: Processes I

Exceptions (Review)

❖ An exception is transfer of control to the operating system (OS)
kernel in response to some event (i.e., change in processor state)

▪ Kernel is the memory-resident part of the OS

▪ Examples: division by 0, page fault, I/O request completes, Ctrl-C

❖ How does the system know where to jump to in the OS?
17

User Code OS Kernel Code

exception
exception processing by
exception handler, then:
• return to current_instr,
• return to next_instr, OR
• abort

current_instr
next_instr

event

CSE351, Autumn 2021L21: Processes I

Exception Table

❖ A jump table for exceptions (also called Interrupt Vector Table)
▪ Each type of event has a unique

exception number 𝑘

▪ 𝑘 = index into exception table
(a.k.a interrupt vector)

▪ Handler 𝑘 is called each time
exception 𝑘 occurs

18

0
1

2
...

n-1

Exception
Table

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception
numbers

This is extra
(non-testable)

material

CSE351, Autumn 2021L21: Processes I

Exception Table (Excerpt)

19

Exception Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-255 OS-defined Interrupt or trap

This is extra
(non-testable)

material

CSE351, Autumn 2021L21: Processes I

Leading Up to Processes

❖ System Control Flow

▪ Control flow

▪ Exceptional control flow

▪ Asynchronous exceptions (interrupts)

▪ Synchronous exceptions (traps & faults)

20

CSE351, Autumn 2021L21: Processes I

Asynchronous Exceptions (Review)

❖ Interrupts: caused by events external to the processor
▪ Indicated by setting the processor’s interrupt pin(s) (wire into CPU)

▪ After interrupt handler runs, the handler returns to “next” instruction

❖ Examples:
▪ I/O interrupts

• Hitting Ctrl-C on the keyboard

• Clicking a mouse button or tapping a touchscreen

• Arrival of a packet from a network

• Arrival of data from a disk

▪ Timer interrupt

• Every few milliseconds, an external timer chip triggers an interrupt

• Used by the OS kernel to take back control from user programs

21

CSE351, Autumn 2021L21: Processes I

Synchronous Exceptions (Review)

❖ Caused by events that occur as a result of executing an
instruction:
▪ Traps

• Intentional: transfer control to OS to perform some function

• Examples: system calls, breakpoint traps, special instructions

• Returns control to “next” instruction

▪ Faults

• Unintentional but possibly recoverable

• Examples: page faults, segment protection faults, integer divide-by-zero
exceptions

• Either re-executes faulting (“current”) instruction or aborts

▪ Aborts

• Unintentional and unrecoverable

• Examples: parity error, machine check (hardware failure detected)

• Aborts current program

22

CSE351, Autumn 2021L21: Processes I

System Calls

❖ Each system call has a unique ID number

❖ Examples for Linux on x86-64:

23

Number Name Description

0 read Read file

1 write Write file

2 open Open file

3 close Close file

4 stat Get info about file

57 fork Create process

59 execve Execute a program

60 _exit Terminate process

62 kill Send signal to process

CSE351, Autumn 2021L21: Processes I

Traps Example: Opening File

❖ User calls open(filename, options)

❖ Calls __open function, which invokes system call instruction syscall

24

00000000000e5d70 <__open>:

...

e5d79: b8 02 00 00 00 mov $0x2,%eax # open is syscall 2

e5d7e: 0f 05 syscall # return value in %rax

e5d80: 48 3d 01 f0 ff ff cmp $0xfffffffffffff001,%rax

...

e5dfa: c3 retq

User code OS Kernel code

Exception

Open file

Returns

syscall
cmp

 %rax contains syscall number

 Other arguments in %rdi,
%rsi, %rdx, %r10, %r8, %r9

 Return value in %rax

 Negative value is an error
corresponding to negative
errno

CSE351, Autumn 2021L21: Processes I

Fault Example: Page Fault

❖ User writes to memory location

❖ That portion (page) of user’s memory
is currently on disk

❖ Page fault handler must load page into physical memory

❖ Returns to faulting instruction: mov is executed again!

▪ Successful on second try
25

int a[1000];

int main () {

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User code OS Kernel code

exception: page fault

Create page and
load into memoryreturns

movl
handle_page_fault:

CSE351, Autumn 2021L21: Processes I

Fault Example: Invalid Memory Reference

❖ Page fault handler detects invalid address

❖ Sends SIGSEGV signal to user process

❖ User process exits with “segmentation fault”
26

int a[1000];

int main() {

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process OS

exception: page fault

detect invalid address

movl

signal process

handle_page_fault:

CSE351, Autumn 2021L21: Processes I

Processes

❖ Processes and context switching

❖ Creating new processes
▪ fork(), exec*(), and wait()

❖ Zombies

27

CSE351, Autumn 2021L21: Processes I

Process 1

What is a process? (Review)

CPU

Registers %rip

Memory

Stack

Heap

Code

Data

Disk

Chrome.exe

It’s an illusion!

CSE351, Autumn 2021L21: Processes I

What is a process? (Review)

❖ Another abstraction in our computer system

▪ Provided by the OS

▪ OS uses a data structure to represent each process

▪ Maintains the interface between the program and the
underlying hardware (CPU + memory)

❖ What do processes have to do with exceptional
control flow?

▪ Exceptional control flow is the mechanism the OS uses to
enable multiple processes to run on the same system

❖ What is the difference between:

▪ A processor? A program? A process?

29

CSE351, Autumn 2021L21: Processes I

Processes (Review)

❖ A process is an instance of a running program

▪ One of the most profound ideas in computer science

❖ Process provides each program with two key
abstractions:

▪ Logical control flow
• Each program seems to have exclusive use of the CPU

• Provided by kernel mechanism called context switching

▪ Private address space
• Each program seems to have exclusive use of main memory

• Provided by kernel mechanism called virtual memory

30

CPU

Registers

Memory

Stack

Heap

Code
Data

CSE351, Autumn 2021L21: Processes I

What is a process?

31

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 2

Process 3

Process 4
Process 1

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

It’s an illusion!

CSE351, Autumn 2021L21: Processes I

What is a process?

32

Computer

Disk
/Applications/

Chrome.exe Slack.exe PowerPoint.exe

CPU

Process 1

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

Process 2

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

Process 3

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

Process 4

“Memory”

Stack

Heap

Code

Data

“CPU”
Registers

Operating
System

It’s an illusion!

CSE351, Autumn 2021L21: Processes I

Multiprocessing: The Illusion

❖ Computer runs many processes simultaneously

▪ Applications for one or more users
• Web browsers, email clients, editors, …

▪ Background tasks
• Monitoring network & I/O devices

33

CPU

Registers

Memory

Stack

Heap

Code
Data

CPU

Registers

Memory

Stack

Heap

Code
Data …

CPU

Registers

Memory

Stack

Heap

Code
Data

CSE351, Autumn 2021L21: Processes I

Multiprocessing: The Reality

❖ Single processor executes multiple processes concurrently
▪ Process executions interleaved, CPU runs one at a time

▪ Address spaces managed by virtual memory system (later in course)

▪ Execution context (register values, stack, …) for other processes saved in
memory 34

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CSE351, Autumn 2021L21: Processes I

Multiprocessing (Review)

❖ Context switch
1) Save current registers in memory

35

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CSE351, Autumn 2021L21: Processes I

Multiprocessing (Review)

❖ Context switch
1) Save current registers in memory

2) Schedule next process for execution

36

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CSE351, Autumn 2021L21: Processes I

Multiprocessing (Review)

37

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

❖ Context switch
1) Save current registers in memory

2) Schedule next process for execution

3) Load saved registers and switch address space

CSE351, Autumn 2021L21: Processes I

Multiprocessing: The (Modern) Reality

❖ Multicore processors
▪ Multiple CPUs (“cores”) on single chip

▪ Share main memory (and some of the
caches)

▪ Each can execute a separate process

• Kernel schedules processes to cores

• Still constantly swapping processes

38

CPU

Registers

Memory

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

Stack

Heap

Code

Data

Saved
registers

…

CPU

Registers

CSE351, Autumn 2021L21: Processes I

Concurrent Processes

❖ Each process is a logical control flow

❖ Two processes run concurrently (are concurrent) if
their instruction executions (flows) overlap in time

▪ Otherwise, they are sequential

❖ Example: (running on single core)

▪ Concurrent: A & B, A & C

▪ Sequential: B & C

39

Process A Process B Process C

time

Assume only one CPU

CSE351, Autumn 2021L21: Processes I

User’s View of Concurrency

❖ Control flows for concurrent processes are physically
disjoint in time

▪ CPU only executes instructions for one process at a time

❖ However, the user can think of concurrent processes
as executing at the same time, in parallel

40

Assume only one CPU

Process A Process B Process C

ti
m

e

Process A Process B Process C

User View

CSE351, Autumn 2021L21: Processes I

Context Switching

❖ Processes are managed by a shared chunk of OS code
called the kernel
▪ The kernel is not a separate process, but rather runs as part of a user

process

❖ In x86-64 Linux:
▪ Same address in each process

refers to same shared
memory location

41

Assume only one CPU

CSE351, Autumn 2021L21: Processes I

Context Switching (Review)

❖ Processes are managed by a shared chunk of OS code
called the kernel
▪ The kernel is not a separate process, but rather runs as part of a user

process

❖ Context switch passes control flow from one process to
another and is performed using kernel code

42

Process A Process B

user code

kernel code

user code

kernel code

user code

context switch

context switch

time

Assume only one CPU

CSE351, Autumn 2021L21: Processes I

Processes

❖ Processes and context switching

❖ Creating new processes
▪ fork() and exec*()

❖ Ending a process
▪ exit(), wait(), waitpid()

▪ Zombies

43

CSE351, Autumn 2021L21: Processes I

Process 2

“Memory”

Stack

Heap

Code
Data

“CPU”

Registers

Creating New Processes & Programs

44

Chrome.exe

Process 1

“Memory”

Stack

Heap

Code
Data

“CPU”

Registers

fork()

exec*()

CSE351, Autumn 2021L21: Processes I

Creating New Processes & Programs

❖ fork-exec model (Linux):
▪ fork() creates a copy of the current process

▪ exec*() replaces the current process’ code and address
space with the code for a different program
• Family: execv, execl, execve, execle, execvp, execlp

▪ fork() and execve() are system calls

❖ Other system calls for process management:
▪ getpid()

▪ exit()

▪ wait(), waitpid()

45

CSE351, Autumn 2021L21: Processes I

fork: Creating New Processes

❖ pid_t fork(void)

▪ Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)

▪ Returns 0 to the child process

▪ Returns child’s process ID (PID) to the parent process

❖ Child is almost identical to parent:
▪ Child gets an identical

(but separate) copy of the
parent’s virtual address
space

▪ Child has a different PID
than the parent

❖ fork is unique (and often confusing) because it is called once
but returns “twice”

46

pid_t pid = fork();

if (pid == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

CSE351, Autumn 2021L21: Processes I

Understanding fork()

47

Process X (parent; PID X)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process Y (child; PID Y)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

CSE351, Autumn 2021L21: Processes I

Understanding fork()

48

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

fork_ret = Y

Process X (parent; PID X)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process Y (child; PID Y)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

fork_ret = 0

CSE351, Autumn 2021L21: Processes I

Understanding fork()

49

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process X (parent; PID X)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

Process Y (child; PID Y)

pid_t fork_ret = fork();

if (fork_ret == 0) {

printf("hello from child\n");

} else {

printf("hello from parent\n");

}

hello from parent hello from child

Which one appears first?

fork_ret = Y fork_ret = 0

CSE351, Autumn 2021L21: Processes I

Summary

❖ Exceptions

▪ Events that require non-standard control flow

▪ Generated asynchronously (interrupts) or synchronously
(traps and faults)

▪ After an exception is handled, either:
• Re-execute the current instruction

• Resume execution with the next instruction

• Abort the process that caused the exception

❖ Processes

▪ Only one of many active processes executes at a time on a
CPU, but each appears to have total control of the processor

▪ OS periodically “context switches” between active processes

50

