
CSE351, Autumn 2021L20: Caches IV

Memory & Caches IV
CSE 351 Autumn 2021

Instructor: Teaching Assistants:

Justin Hsia Allie Pfleger Anirudh Kumar Assaf Vayner
Atharva Deodhar Celeste Zeng Dominick Ta
Francesca Wang Hamsa Shankar Isabella Nguyen
Joy Dang Julia Wang Maggie Jiang
Monty Nitschke Morel Fotsing Sanjana Chintalapati

http://xkcd.com/1854/

http://xkcd.com/1854/

CSE351, Autumn 2021L20: Caches IV

Relevant Course Information

❖ Lab 4 due Monday, Nov. 29

▪ Cache parameter puzzles and code optimizations

❖ hw19 due Wed (11/17), hw20 due Fri (11/19)

▪ Lab 4 preparation

❖ Midterm scores posted

▪ See Ed post for common misconceptions

▪ Regrade requests open from Nov. 17-19 (Wed-Fri)

2

CSE351, Autumn 2021L20: Caches IV

Growth vs. Fixed Mindset

❖ Students can be thought of as having either a
“growth” mindset or a “fixed” mindset (based on
research by Prof. Carol Dweck)

▪ “In a fixed mindset students believe their basic abilities,
their intelligence, their talents, are just fixed traits. They
have a certain amount and that's that, and then their goal
becomes to look smart all the time and never look dumb.”

▪ “In a growth mindset students understand that their talents
and abilities can be developed through effort, good teaching
and persistence. They don't necessarily think everyone's the
same or anyone can be Einstein, but they believe everyone
can get smarter if they work at it.”

3

CSE351, Autumn 2021L20: Caches IV

Reading Review

❖ Terminology:

▪ Write-hit policies: write-back, write-through

▪ Write-miss policies: write allocate, no-write allocate

▪ Cache blocking

❖ Questions from the Reading?

4

CSE351, Autumn 2021L20: Caches IV

What about writes? (Review)

❖ Multiple copies of data may exist:
▪ multiple levels of cache and main memory

❖ What to do on a write-hit?
▪ Write-through: write immediately to next level

▪ Write-back: defer write to next level until line is evicted (replaced)

• Must track which cache lines have been modified (“dirty bit”)

❖ What to do on a write-miss?
▪ Write allocate: (“fetch on write”) load into cache, then execute the

write-hit policy

• Good if more writes or reads to the location follow

▪ No-write allocate: (“write around”) just write immediately to next level

❖ Typical caches:
▪ Write-back + Write allocate, usually

▪ Write-through + No-write allocate, occasionally
5

CSE351, Autumn 2021L20: Caches IV

Write-back, Write Allocate Example

6

Note: We are making some unrealistic simplifications to keep this
example simple and focus on the cache policies

0xBEEFCache: G01

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

There is only one set in this tiny cache,
so the tag is the entire block number!

CSE351, Autumn 2021L20: Caches IV

Write-back, Write Allocate Example

7

0xBEEFCache: G01

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F)

Step 1: Bring F into
cache

Write Miss

Not valid x86, assume we mean an address
associated with this block num

CSE351, Autumn 2021L20: Caches IV

Write-back, Write Allocate Example

8

0xCAFECache: F01

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F)

Step 1: Bring F into
cache

Step 2: Write
0xFACE to cache
only and set the
dirty bit

Write Miss

CSE351, Autumn 2021L20: Caches IV

Write-back, Write Allocate Example

9

0xFACECache: F11

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F)

Step 1: Bring F into
cache

Step 2: Write
0xFACE to cache
only and set the
dirty bit

Write Miss

CSE351, Autumn 2021L20: Caches IV

Write-back, Write Allocate Example

10

0xFACECache: F11

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F)

Step: Write
0xFEED to cache
only (and set the
dirty bit)

2) mov $0xFEED, (F)
Write Miss Write Hit

CSE351, Autumn 2021L20: Caches IV

Write-back, Write Allocate Example

11

0xFEEDCache: F11

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F) 2) mov $0xFEED, (F)
Write Miss Write Hit

CSE351, Autumn 2021L20: Caches IV

Write-back, Write Allocate Example

12

0xFEEDCache: F11

Valid Dirty Tag Block Contents

Memory:
0xCAFE

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F) 2) mov $0xFEED, (F) 3) mov (G), %ax
Write Miss Write Hit Read Miss

Step 1: Write F back
to memory since it
is dirty

CSE351, Autumn 2021L20: Caches IV

Write-back, Write Allocate Example

13

0xFEEDCache: F11

Valid Dirty Tag Block Contents

Memory:
0xFEED

0xBEEF

F

G

●
●
●

●
●
●

●
●
●

Block
Num

1) mov $0xFACE, (F) 2) mov $0xFEED, (F) 3) mov (G), %ax
Write Miss Write Hit Read Miss

Step 1: Write F back
to memory since it
is dirty

Step 2: Bring G into
the cache so that
we can copy it into
%ax

0 G 0xBEEF

CSE351, Autumn 2021L20: Caches IV

Cache Simulator

❖ Want to play around with cache parameters and
policies? Check out our cache simulator!
▪ https://courses.cs.washington.edu/courses/cse351/cachesim/

❖ Way to use:

▪ Take advantage of “explain mode” and navigable history to
test your own hypotheses and answer your own questions

▪ Self-guided Cache Sim Demo posted along with Section 7

▪ Will be used in hw20 – Lab 4 Preparation

14

https://courses.cs.washington.edu/courses/cse351/cachesim/

CSE351, Autumn 2021L20: Caches IV

Polling Question

❖ Which of the following cache statements is FALSE?

▪ Vote in Ed Lessons

A. We can reduce compulsory misses by decreasing
our block size

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We’re lost…
15

CSE351, Autumn 2021L20: Caches IV

Optimizations for the Memory Hierarchy

❖ Write code that has locality!

▪ Spatial: access data contiguously

▪ Temporal: make sure access to the same data is not too far
apart in time

❖ How can you achieve locality?

▪ Adjust memory accesses in code (software) to improve miss
rate (MR)
• Requires knowledge of both how caches work as well as your system’s

parameters

▪ Proper choice of algorithm

▪ Loop transformations

16

CSE351, Autumn 2021L20: Caches IV

Example: Matrix Multiplication

17

C

= ×

A B

ai* b*j

cij

CSE351, Autumn 2021L20: Caches IV

Matrices in Memory

❖ How do cache blocks fit into this scheme?

▪ Row major matrix in memory:

18

Cache
blocks

COLUMN of matrix (blue) is spread
among cache blocks shown in red

CSE351, Autumn 2021L20: Caches IV

Naïve Matrix Multiply

move along rows of A

for (i = 0; i < n; i++)

move along columns of B

for (j = 0; j < n; j++)

EACH k loop reads row of A, col of B

Also read & write c(i,j) n times

for (k = 0; k < n; k++)

c[i*n+j] += a[i*n+k] * b[k*n+j];

19

= + ×
C(i,j) A(i,:)

B(:,j)
C(i,j)

CSE351, Autumn 2021L20: Caches IV

Cache Miss Analysis (Naïve)

❖ Scenario Parameters:
▪ Square matrix (𝑛 × 𝑛), elements are doubles

▪ Cache block size 𝐾 = 64 B = 8 doubles

▪ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

❖ Each iteration:

▪
𝑛

8
+ 𝑛 =

9𝑛

8
misses

20

×=

Ignoring
matrix c

CSE351, Autumn 2021L20: Caches IV

Cache Miss Analysis (Naïve)

❖ Scenario Parameters:
▪ Square matrix (𝑛 × 𝑛), elements are doubles

▪ Cache block size 𝐾 = 64 B = 8 doubles

▪ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

❖ Each iteration:

▪
𝑛

8
+ 𝑛 =

9𝑛

8
misses

▪ Afterwards in cache:
(schematic)

21

×=

×=

8 doubles wide

Ignoring
matrix c

CSE351, Autumn 2021L20: Caches IV

Cache Miss Analysis (Naïve)

❖ Scenario Parameters:
▪ Square matrix (𝑛 × 𝑛), elements are doubles

▪ Cache block size 𝐾 = 64 B = 8 doubles

▪ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

❖ Each iteration:

▪
𝑛

8
+ 𝑛 =

9𝑛

8
misses

❖ Total misses:
9𝑛

8
× 𝑛2 =

9

8
𝑛3

22

×=

Ignoring
matrix c

once per product matrix element

CSE351, Autumn 2021L20: Caches IV

Linear Algebra to the Rescue (1)

❖ Can get the same result of a matrix multiplication by
splitting the matrices into smaller submatrices
(matrix “blocks”)

❖ For example, multiply two 4×4 matrices:

23

This is extra
(non-testable)

material

CSE351, Autumn 2021L20: Caches IV

Linear Algebra to the Rescue (2)

24

Matrices of size 𝑛 × 𝑛, split into 4 blocks of size 𝑟 (𝑛=4𝑟)

C22 = A21B12 + A22B22 + A23B32 + A24B42 = k A2k*Bk2

❖ Multiplication operates on small “block” matrices
▪ Choose size so that they fit in the cache!
▪ This technique called “cache blocking”

C11 C12 C13 C14

C21 C22 C23 C24

C31 C32 C43 C34

C41 C42 C43 C44

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A144

B11 B12 B13 B14

B21 B22 B23 B24

B32 B32 B33 B34

B41 B42 B43 B44

This is extra
(non-testable)

material

CSE351, Autumn 2021L20: Caches IV

Blocked Matrix Multiply

❖ Blocked version of the naïve algorithm:

▪ 𝑟 = block matrix size (assume 𝑟 divides 𝑛 evenly)

25

move by rxr BLOCKS now

for (i = 0; i < n; i += r)

for (j = 0; j < n; j += r)

for (k = 0; k < n; k += r)

block matrix multiplication

for (ib = i; ib < i+r; ib++)

for (jb = j; jb < j+r; jb++)

for (kb = k; kb < k+r; kb++)

c[ib*n+jb] += a[ib*n+kb]*b[kb*n+jb];

CSE351, Autumn 2021L20: Caches IV

Cache Miss Analysis (Blocked)

❖ Scenario Parameters:

▪ Cache block size 𝐾 = 64 B = 8 doubles

▪ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

▪ Three blocks (𝑟 × 𝑟) fit into cache: 3𝑟2 < 𝐶

❖ Each block iteration:

▪ 𝑟2/8 misses per block

▪ 2𝑛/𝑟 × 𝑟2/8 = 𝑛𝑟/4

26

𝑛/𝑟 blocks
𝑟2elements per block, 8 per cache block

𝑛/𝑟 blocks in row and column

Ignoring
matrix c

×=

CSE351, Autumn 2021L20: Caches IV

Cache Miss Analysis (Blocked)

❖ Scenario Parameters:

▪ Cache block size 𝐾 = 64 B = 8 doubles

▪ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

▪ Three blocks (𝑟 × 𝑟) fit into cache: 3𝑟2 < 𝐶

❖ Each block iteration:

▪ 𝑟2/8 misses per block

▪ 2𝑛/𝑟 × 𝑟2/8 = 𝑛𝑟/4

▪ Afterwards in cache
(schematic)

27

𝑛/𝑟 blocks
𝑟2elements per block, 8 per cache block

𝑛/𝑟 blocks in row and column

Ignoring
matrix c

×=

×=

CSE351, Autumn 2021L20: Caches IV

Cache Miss Analysis (Blocked)

❖ Scenario Parameters:

▪ Cache block size 𝐾 = 64 B = 8 doubles

▪ Cache size 𝐶 ≪ 𝑛 (much smaller than 𝑛)

▪ Three blocks (𝑟 × 𝑟) fit into cache: 3𝑟2 < 𝐶

❖ Each block iteration:

▪ 𝑟2/8 misses per block

▪ 2𝑛/𝑟 × 𝑟2/8 = 𝑛𝑟/4

❖ Total misses:

▪ 𝑛𝑟/4 × 𝑛/𝑟 2 = 𝑛3/(4𝑟)
28

𝑛/𝑟 blocks
𝑟2elements per block, 8 per cache block

𝑛/𝑟 blocks in row and column

Ignoring
matrix c

×=

CSE351, Autumn 2021L20: Caches IV

Matrix Multiply Visualization

❖ Here 𝑛 = 100, 𝐶 = 32 KiB, 𝑟 = 30

29

Naïve:

Blocked:

≈ 1,020,000
cache misses

≈ 90,000
cache misses

CSE351, Autumn 2021L20: Caches IV

Cache-Friendly Code

❖ Programmer can optimize for cache performance
▪ How data structures are organized

▪ How data are accessed
• Nested loop structure

• Blocking is a general technique

❖ All systems favor “cache-friendly code”
▪ Getting absolute optimum performance is very platform

specific
• Cache size, cache block size, associativity, etc.

▪ Can get most of the advantage with generic coding rules
• Keep working set reasonably small (temporal locality)

• Use small strides (spatial locality)

• Focus on inner loop code

30

CSE351, Autumn 2021L20: Caches IV

Cache Motivation, Revisited

❖ Memory accesses are expensive!

▪ Massive speedups to processors without similar speedups in
memory only made the problem worse

▪ “Processor-Memory Bottleneck”:

❖ We defined “locality”, based on observations about
existing programs, written by an extremely small
subset of the population

▪ We built hardware that utilizes locality to improve
performance (e.g., AMAT)

31

CSE351, Autumn 2021L20: Caches IV

Cache “Conclusions”

❖ All systems favor “cache-friendly code”

▪ Can get most of the advantage with generic coding rules

❖ ⚠️We implicitly made value judgments about
“good” and “bad” code

▪ “Good” code exhibits “good” locality

▪ “Good” code might be considered the (desired) common
case

32

CSE351, Autumn 2021L20: Caches IV

Common Case Optimizations

❖ Optimizing for the common case is a classic (arguably
foundational) CS technique!

▪ e.g., algorithms analysis often uses worse case or average
case performance

▪ e.g., caches optimize for an average program (“most
programs”) that exhibits locality

❖ Natural conclusion is to make the common case as
performant as possible at the expense of edge-cases

▪ Generally, bigger performance impact with common case
than edge case optimizations

▪ What’s the danger here?

33

CSE351, Autumn 2021L20: Caches IV

The Common Case and Normativity

❖ “Normativity is the phenomenon in human societies
of designating some actions or outcomes as good or
desirable or permissible and others as bad or
undesirable or impermissible.”

▪ https://en.wikipedia.org/wiki/Normativity

❖ Norms are what are considered “usual” or “expected”

▪ These often get conflated with the common case:
norm gets “common case” treatment, abnormal gets “edge
case” treatment

▪ Who determines the norms?

34

https://en.wikipedia.org/wiki/Normativity

CSE351, Autumn 2021L20: Caches IV

Example: TSA Body Scanners

❖ TSA used machine learning to determine
predictable variation among “average” bodies

▪ Built two models: one for “men” and one for “women”

❖ TSA agent chooses model to use based on how the
traveler is presenting:

❖ Who are the “edge cases?”

❖ What is the “edge case performance?”

35

CSE351, Autumn 2021L20: Caches IV

Design Considerations

36

❖ Make sure you account for non-normative cases

▪ Is this (change to) edge-case behavior okay/acceptable?

❖ Be careful of implicit normative assumptions

▪ Can erase people’s experiences and diversity, even
labeling/categorizing them as threats

▪ Caches aren’t neutral, either – they assume that the
underlying data doesn’t change
• Changes can come from above (the CPU), but not from below

• e.g., changing your name in Google Drive “breaks” the browser cache

❖ Discuss: Where else do you see normative
assumptions made in tech or CS?

