
CSE351, Autumn 2021L13: Executables & Arrays

Executables & Arrays
CSE 351 Autumn 2021

Instructor: Teaching Assistants:

Justin Hsia Allie Pfleger Anirudh Kumar Assaf Vayner
Atharva Deodhar Celeste Zeng Dominick Ta
Francesca Wang Hamsa Shankar Isabella Nguyen
Joy Dang Julia Wang Maggie Jiang
Monty Nitschke Morel Fotsing Sanjana Chintalapati

http://xkcd.com/1790/

http://xkcd.com/1790/

CSE351, Autumn 2021L13: Executables & Arrays

Relevant Course Information

❖ Lab 2 & hw12 due Friday (10/29)

❖ hw13 due next Wednesday (11/3)

▪ Based on the next two lectures, longer than normal

❖ Midterm (take home, 11/3-11/5)

▪ Midterm review problems in section tomorrow

▪ Make notes and use the midterm reference sheet

▪ Form study groups and look at past exams!

2

https://courses.cs.washington.edu/courses/cse351/20au/exams/ref-mt.pdf

CSE351, Autumn 2021L13: Executables & Arrays

GDB Demo #2

❖ Let’s examine the stack frames on a real
machine!

▪ Using from the course website

❖ You will need to use GDB to get through the Midterm

▪ Useful debugger in this class and beyond!

❖ Pay attention to:

▪ Checking the current stack frames ()

▪ Getting stack frame information ()

▪ Examining memory ()

3

CSE351, Autumn 2021L13: Executables & Arrays

Instruction Set Philosophies, Revisited

❖ Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized
instructions as needed

▪ Design goals: complete tasks in as few instructions as
possible; minimize memory accesses for instructions

❖ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

▪ Design goals: build fast hardware; instructions should
complete in few clock cycles (ideally 1); minimize complexity
and maximize performance

❖ How different are these two philosophies, really?

4

CSE351, Autumn 2021L13: Executables & Arrays

Instruction Set Philosophies, Revisited

❖ Complex Instruction Set Computing (CISC):
Add more and more elaborate and specialized
instructions as needed

▪ Design goals: complete tasks in as few instructions as
possible; minimize memory accesses for instructions

❖ Reduced Instruction Set Computing (RISC):
Keep instruction set small and regular

▪ Design goals: build fast hardware; instructions should
complete in few clock cycles (ideally 1); minimize complexity
and maximize performance

❖ How different are these two philosophies, really?

▪ Both pursue efficiency (minimalism is a means to an end)
5

CSE351, Autumn 2021L13: Executables & Arrays

Exceedingly Dominant ISAsMainstream ISAs, Revisited

6

Macbooks & PCs
(Core i3, i5, i7, M)
x86-64 Instruction Set

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

Mostly research
(some traction in embedded)
RISC-V Instruction Set

Does anything
feel “off” about
this landscape?

http://ref.x86asm.net/coder64-abc.html
http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf
https://inst.eecs.berkeley.edu/~cs61c/resources/riscvcard-large.pdf

CSE351, Autumn 2021L13: Executables & Arrays

Tech Monopolization

❖ How many “dominant” ISAs are there?

▪ 2: x86, ARM

❖ How many “dominant” phone brands are there?

▪ 4: Samsung, Apple, Huawei, Xiaomi

❖ How many “dominant” operating systems are there?

▪ 3/4: Android, iOS/macOS, Windows, Linux (?)

❖ How many “dominant” chip manufacturers are there?

▪ 3: Intel, Samsung, TSMC

❖ It wasn’t always this way! More on this in Lecture 29
(Computers and Society)

7

CSE351, Autumn 2021L13: Executables & Arrays

Assembly Discussion Questions

❖ We taught you assembly using x86-64; you didn’t
have a choice

▪ What are some of the advantages of this choice?

▪ What are some of the drawbacks of this choice?

▪ What are some possible assumptions we are making about
our students or values we are forcing on our students with
this choice?

8

CSE351, Autumn 2021L13: Executables & Arrays

❖ Topic Group 2: Programs

▪ x86-64 Assembly, Procedures, Stacks,
Executables

❖ How are programs created and executed on a CPU?

▪ How does your source code become something that your
computer understands?

▪ How does the CPU organize and manipulate local data?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

9

⋮

CSE351, Autumn 2021L13: Executables & Arrays

Reading Review

❖ Terminology:

▪ CALL: compiler, assembler, linker, loader

▪ Object file: symbol table, relocation table

▪ Disassembly

▪ Multidimensional arrays, row-major ordering

▪ Multilevel arrays

❖ Questions from the Reading?

10

CSE351, Autumn 2021L13: Executables & Arrays

Building an Executable with C (Review)

❖ Code in files p1.c p2.c

❖ Compile with command: gcc -Og p1.c p2.c -o p

▪ Put resulting machine code in file p

❖ Run with command: ./p

11

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc -c or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries (.a)

Loader (the OS)

CSE351, Autumn 2021L13: Executables & Arrays

Compiler (Review)

❖ Input: Higher-level language code (e.g., C, Java)
▪ foo.c

❖ Output: Assembly language code (e.g., x86, ARM, MIPS)
▪ foo.s

❖ First there’s a preprocessor step to handle #directives
▪ Macro substitution, plus other specialty directives

▪ If curious/interested: http://tigcc.ticalc.org/doc/cpp.html

❖ Super complex, whole courses devoted to these!

❖ Compiler optimizations
▪ “Level” of optimization specified by capital ‘O’ flag (e.g. -Og, -O3)

▪ Options: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

12

http://tigcc.ticalc.org/doc/cpp.html
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

CSE351, Autumn 2021L13: Executables & Arrays

Compiling Into Assembly (Review)

❖ C Code (sum.c)

❖ x86-64 assembly (gcc –Og –S sum.c)

Warning: You may get different results with other versions of
gcc and different compiler settings

13

void sumstore(long x, long y, long *dest) {

long t = x + y;

*dest = t;

}

sumstore(long, long, long*):

addq %rdi, %rsi

movq %rsi, (%rdx)

ret

CSE351, Autumn 2021L13: Executables & Arrays

Assembler (Review)

❖ Input: Assembly language code (e.g., x86, ARM, MIPS)
▪ foo.s

❖ Output: Object files (e.g., ELF, COFF)
▪ foo.o

▪ Contains object code and information tables

❖ Reads and uses assembly directives

▪ e.g., .text, .data, .quad

▪ x86: https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

❖ Produces “machine language”
▪ Does its best, but object file is not a completed binary

❖ Example: gcc -c foo.s

14

https://docs.oracle.com/cd/E26502_01/html/E28388/eoiyg.html

CSE351, Autumn 2021L13: Executables & Arrays

Producing Machine Language (Review)

❖ Simple cases: arithmetic and logical operations, shifts, etc.
▪ All necessary information is contained in the instruction itself

❖ Addresses and labels are problematic because the final
executable hasn’t been constructed yet!
▪ Conditional and unconditional jumps

▪ Accessing static data (e.g., global variable or jump table)

▪ call

❖ So how do we deal with these in the meantime?

15

CSE351, Autumn 2021L13: Executables & Arrays

Object File Information Tables (Review)

❖ Each object file has its own symbol and relocation tables

❖ Symbol Table holds list of “items” that may be used by other
files
▪ Non-local labels – function names for call

▪ Static Data – variables & literals that might be accessed across files

❖ Relocation Table holds list of “items” that this file needs the
address of later (currently undetermined)
▪ Any label or piece of static data referenced in an instruction in this file

• Both internal and external

16

CSE351, Autumn 2021L13: Executables & Arrays

Object File Format

1) object file header: size and position of the other pieces of the
object file

2) text segment: the machine code

3) data segment: data in the source file (binary)

4) relocation table: identifies lines of code that need to be
“handled”

5) symbol table: list of this file’s labels and data that can be
referenced

6) debugging information

❖ More info: ELF format
▪ http://www.skyfree.org/linux/references/ELF_Format.pdf

17

http://www.skyfree.org/linux/references/ELF_Format.pdf

CSE351, Autumn 2021L13: Executables & Arrays

Linker (Review)

❖ Input: Object files (e.g., ELF, COFF)
▪ foo.o

❖ Output: executable binary program
▪ a.out

❖ Combines several object files into a single executable (linking)

❖ Enables separate compilation/assembling of files
▪ Changes to one file do not require recompiling of whole program

18

CSE351, Autumn 2021L13: Executables & Arrays

Linking (Review)

1) Take text segment from each .o file and put them together

2) Take data segment from each .o file, put them together, and
concatenate this onto end of text segments

3) Resolve References
▪ Go through Relocation Table; handle each entry

19

object file 1

info 1

data 1

text 1

object file 2

info 2

data 2

text 2

Linker

a.out

Relocated data 1

Relocated data 2

Relocated text 1

Relocated text 2

CSE351, Autumn 2021L13: Executables & Arrays

Disassembling Object Code (Review)

❖ Disassembled:

❖ Disassembler (objdump -d sum)

▪ Useful tool for examining object code (man 1 objdump)

▪ Analyzes bit pattern of series of instructions

▪ Produces approximate rendition of assembly code

▪ Can run on either executable or object file

20

0000000000400536 <sumstore>:

400536: 48 01 fe add %rdi,%rsi

400539: 48 89 32 mov %rsi,(%rdx)

40053c: c3 retq

CSE351, Autumn 2021L13: Executables & Arrays

What Can be Disassembled?

❖ Anything that can be interpreted as executable code

❖ Disassembler examines bytes and attempts to reconstruct
assembly source

21

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".

Disassembly of section .text:

30001000 <.text>:

30001000: 55 push %ebp

30001001: 8b ec mov %esp,%ebp

30001003: 6a ff push $0xffffffff

30001005: 68 90 10 00 30 push $0x30001090

3000100a: 68 91 dc 4c 30 push $0x304cdc91

Reverse engineering forbidden by
Microsoft End User License Agreement

CSE351, Autumn 2021L13: Executables & Arrays

Loader (Review)

❖ Input: executable binary program, command-line arguments
▪ ./a.out arg1 arg2

❖ Output: <program is run>

❖ Loader duties primarily handled by OS/kernel
▪ More about this when we learn about processes

❖ Memory sections (Instructions, Static Data, Stack) are set up

❖ Registers are initialized

22

CSE351, Autumn 2021L13: Executables & Arrays

❖ Topic Group 1: Data

▪ Memory, Data, Integers, Floating Point,
Arrays, Structs

❖ How do we store information for other parts of the
house of computing to access?

▪ How do we represent data and what limitations exist?

▪ What design decisions and priorities went into these
encodings?

Programming Languages
& Libraries

Operating System

Hardware

Physics

Transistors, Gates, Digital Systems

Even more applications

Applications

The Hardware/Software Interface

23

⋮

CSE351, Autumn 2021L13: Executables & Arrays

Data Structures in C

❖ Arrays

▪ One-dimensional

▪ Multidimensional (nested)

▪ Multilevel

❖ Structs

▪ Alignment

❖ Unions

24

CSE351, Autumn 2021L13: Executables & Arrays

Array Allocation (Review)

❖ Basic Principle
▪ T A[N]; → array of data type T and length N

▪ Contiguously allocated region of N*sizeof(T) bytes

▪ Identifier A returns address of array (type T*)

25

char msg[12];

x x + 12

int val[5];

x x + 4 x + 8 x + 12 x + 16 x + 20

double a[3];

x + 24x x + 8 x + 16

char* p[3];

(or char *p[3];)

x x + 8 x + 16 x + 24

CSE351, Autumn 2021L13: Executables & Arrays

Array Access (Review)

❖ Basic Principle
▪ T A[N]; → array of data type T and length N

▪ Identifier A returns address of array (type T*)

❖ Reference Type Value

26

int x[5]; 3 7 1 9 5

a a+4 a+8 a+12 a+16 a+20

x[4] int 5

x int* a

x+1 int* a + 4

&x[2] int* a + 8

x[5] int ?? (whatever’s in memory at addr x+20)

*(x+1) int 7

x+i int* a + 4*i

CSE351, Autumn 2021L13: Executables & Arrays

Array Example

27

❖ Example arrays happened to be allocated in successive 20 byte
blocks
▪ Not guaranteed to happen in general

int cmu[5]; 1 5 2 1 3

16 20 24 28 32 36

int uw[5]; 9 8 1 9 5

36 40 44 48 52 56

int ucb[5]; 9 4 7 2 0

56 60 64 68 72 76

// arrays of ZIP code digits

int cmu[5] = { 1, 5, 2, 1, 3 };

int uw[5] = { 9, 8, 1, 9, 5 };

int ucb[5] = { 9, 4, 7, 2, 0 };

brace-enclosed list initialization

CSE351, Autumn 2021L13: Executables & Arrays

C Details: Arrays and Pointers

❖ Arrays are (almost) identical to pointers
▪ char* string and char string[] are nearly

identical declarations

▪ Differ in subtle ways: initialization, sizeof(), etc.

❖ An array name is an expression (not a variable) that
returns the address of the array
▪ It looks like a pointer to the first (0th) element

• *ar same as ar[0], *(ar+2) same as ar[2]

▪ An array name is read-only (no assignment) because it is a
label
• Cannot use "ar = <anything>"

28

CSE351, Autumn 2021L13: Executables & Arrays

C Details: Arrays and Functions

❖ Declared arrays only allocated while the scope is
valid:

char* foo() {

char string[32]; ...;

return string;

}

❖ An array is passed to a function as a pointer:

▪ Array size gets lost!

int foo(int ar[], unsigned int size) {

... ar[size-1] ...

}

29

BAD!

Must explicitly
pass the size!

Really int* ar

CSE351, Autumn 2021L13: Executables & Arrays

Data Structures in C

❖ Arrays

▪ One-dimensional

▪ Multidimensional (nested)

▪ Multilevel

❖ Structs

▪ Alignment

❖ Unions

30

CSE351, Autumn 2021L13: Executables & Arrays

❖ What is the layout in memory?

int sea[4][5] =

{{ 9, 8, 1, 9, 5 },

{ 9, 8, 1, 0, 5 },

{ 9, 8, 1, 0, 3 },

{ 9, 8, 1, 1, 5 }};

Nested Array Example

31

Remember, T A[N] is
an array with elements
of type T, with length N

CSE351, Autumn 2021L13: Executables & Arrays

Nested Array Example

❖ “Row-major” ordering of all elements

▪ Elements in the same row are contiguous

▪ Guaranteed (in C)
32

76 96 116 136 156

9 8 1 9 5 9 8 1 0 5 9 8 1 0 3 9 8 1 1 5

sea[3][2];

Row 0 Row 1 Row 2 Row 3

int sea[4][5] =

{{ 9, 8, 1, 9, 5 },

{ 9, 8, 1, 0, 5 },

{ 9, 8, 1, 0, 3 },

{ 9, 8, 1, 1, 5 }};

Remember, T A[N] is
an array with elements
of type T, with length N

CSE351, Autumn 2021L13: Executables & Arrays

Two-Dimensional (Nested) Arrays

❖ Declaration: T A[R][C];

▪ 2D array of data type T

▪ R rows, C columns

▪ Each element requires
sizeof(T) bytes

❖ Array size?

33

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•

•

•

•

•

•

CSE351, Autumn 2021L13: Executables & Arrays

Two-Dimensional (Nested) Arrays

❖ Declaration: T A[R][C];

▪ 2D array of data type T

▪ R rows, C columns

▪ Each element requires
sizeof(T) bytes

❖ Array size:
▪ R*C*sizeof(T) bytes

❖ Arrangement: row-major ordering

34

int A[R][C];

• • •

A

[0]

[0]

A

[0]

[C-1]

• • •

A

[1]

[0]

A

[1]

[C-1]

• • •

A

[R-1]

[0]

A

[R-1]

[C-1]

• • •

4*R*C bytes

A[0][0] A[0][C-1]

A[R-1][0]

• • •

• • • A[R-1][C-1]

•

•

•

•

•

•

CSE351, Autumn 2021L13: Executables & Arrays

Nested Array Row Access

❖ Row vectors
▪ Given T A[R][C],

• A[i] is an array of C elements (“row i”)

• A is address of array

• Starting address of row i =

35

• • •• • •

A

[i]

[0]

A

[i]

[C-1]

A[i]

• • •

A

[R-1]

[0]

A

[R-1]

[C-1]

A[R-1]

• • •

A

• • •

A

[0]

[0]

A

[0]

[C-1]

A[0]

A+i*C*4 A+(R-1)*C*4

int A[R][C];

A + i*(C * sizeof(T))

CSE351, Autumn 2021L13: Executables & Arrays

• • •• • • • • •

A

[i]

[j]

A[i]

• • •

A

[R-1]

[0]

A

[R-1]

[C-1]

A[R-1]

• • •

A

• • •

A

[0]

[0]

A

[0]

[C-1]

A[0]

A + i*C*4 A + (R-1)*C*4

int A[R][C];

Nested Array Element Access

❖ Array Elements
▪ A[i][j] is element of type T; let sizeof(T) = t bytes

▪ Address of A[i][j] is

36
?

CSE351, Autumn 2021L13: Executables & Arrays

Nested Array Element Access

❖ Array Elements
▪ A[i][j] is element of type T; let sizeof(T) = t bytes

▪ Address of A[i][j] is
A + i*(C*t) + j*t = A + (i*C + j)*t

37
A + i*C*4 + j*4

• • •• • • • • •

A

[i]

[j]

A[i]

• • •

A

[R-1]

[0]

A

[R-1]

[C-1]

A[R-1]

• • •

A

• • •

A

[0]

[0]

A

[0]

[C-1]

A[0]

A + i*C*4 A + (R-1)*C*4

int A[R][C];

CSE351, Autumn 2021L13: Executables & Arrays

Data Structures in C

❖ Arrays

▪ One-dimensional

▪ Multidimensional (nested)

▪ Multilevel

❖ Structs

▪ Alignment

❖ Unions

38

CSE351, Autumn 2021L13: Executables & Arrays

Multilevel Array Example

❖ Multilevel Array Declaration(s):

▪ Variable univ denotes array of 3 pointer elements

▪ Each pointer points to a separate array of ints

• Could have inner arrays of different lengths!

39

int cmu[5] = { 1, 5, 2, 1, 3 };

int uw[5] = { 9, 8, 1, 9, 5 };

int ucb[5] = { 9, 4, 7, 2, 0 };

int* univ[3] = {uw, cmu, ucb};

36160

16

60

168

176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36
9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

Note: this is how
Java represents

multidimensional
arrays!

CSE351, Autumn 2021L13: Executables & Arrays

Multilevel Array Element Access

40

❖ Mem[Mem[univ+8*index]+4*digit]

▪ Must do two memory reads: (1) get pointer to row array,
(2) access element within array

int get_univ_digit (int index, int digit) {

return univ[index][digit];

}

36160

16

60

168

176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36
9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

CSE351, Autumn 2021L13: Executables & Arrays

Array Element Accesses

Multidimensional array:

41

Multilevel array:
int get_sea_digit

(int index, int digit)

{

return sea[index][digit];

}

int get_univ_digit

(int index, int digit)

{

return univ[index][digit];

}

36160

16

60

168

176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36

9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

❖ Accesses look the same, but aren’t:

❖ Memory layout is different:

▪ One array declaration = one contiguous block of memory

Mem[sea+20*index+4*digit] Mem[Mem[univ+8*index]+4*digit]

CSE351, Autumn 2021L13: Executables & Arrays

Summary

❖ Building an executable

▪ Multistep process: compiling, assembling, linking

▪ Object code finished by linker using symbol and relocation
tables to produce machine code (with finalized addresses)

▪ Loader sets up initial memory from executable

❖ Arrays

▪ Contiguous allocations of memory

▪ No bounds checking (and no default initialization)

▪ Can usually be treated like a pointer to first element

▪ Multidimensional → array of arrays in one contiguous block

▪ Multilevel → array of pointers to arrays
• Each array/part separate in memory

42

