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Administrivia

❖ hw6 due Friday, hw7 due Monday

❖ Lab 1a: last chance to submit is tonight @ 11:59 pm

▪ One submission per partnership

▪ Make sure you check the Gradescope autograder output!

▪ Grades hopefully released by end of Sunday (10/17)

❖ Lab 1b due Monday (10/18)

▪ Submit , , and 

❖ Section tomorrow on Integers and Floating Point

2



CSE351, Autumn 2021L07:  Floating Point II

Getting Help with 351

❖ Lecture recordings, readings, inked slides

❖ Form a study group!

▪ Good for everything but labs, which should be done in pairs

▪ Communicate regularly, use the class terminology, ask and 
answer each others’ questions, show up to OH together

❖ Attend office hours

▪ Use the OH queue, but can also chat with other students 
there – help each other learn!

❖ Post on Ed Discussion

❖ Request a 1-on-1 meeting

▪ Available on a limited basis for special circumstances
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Reading Review

❖ Terminology:

▪ Special cases
• Denormalized numbers

• ±∞

• Not-a-Number (NaN)

▪ Limits of representation
• Overflow

• Underflow

• Rounding

❖ Questions from the Reading?
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Review Questions

❖ What is the value of the following floats?

▪

▪

❖ For the following code, what is the smallest value of 
that will encounter a limit of representation?
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Floating Point Encoding Summary (Review)

E M Interpretation

0x00 0 ± 0

0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num

0xFF 0 ± ∞

0xFF non-zero NaN
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Special Cases

❖ But wait… what happened to zero?

▪ Special case: E and M all zeros = 0

▪ Two zeros!  But at least 0x00000000 = 0 like integers

❖ E = 0xFF, M = 0:  ± ∞

▪ e.g., division by 0

▪ Still work in comparisons!

❖ E = 0xFF, M ≠ 0:  Not a Number (NaN)

▪ e.g., square root of negative number, 0/0, ∞–∞

▪ NaN propagates through computations

▪ Value of M can be useful in debugging
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New Representation Limits

❖ New largest value (besides ∞)?

▪ E = 0xFF has now been taken!

▪ E = 0xFE has largest:  1.1…12×2127 = 2128 – 2104

❖ New numbers closest to 0:

▪ E = 0x00 taken; next smallest is E = 0x01

▪ a = 1.0…02×2-126 = 2-126

▪ b = 1.0…012×2-126 = 2-126 + 2-149

▪ Normalization and implicit 1 are to blame

▪ Special case: E = 0, M ≠ 0 are denormalized numbers
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Denorm Numbers

❖ Denormalized numbers

▪ No leading 1

▪ Uses implicit exponent of –126 even though E = 0x00

❖ Denormalized numbers close the gap between zero 
and the smallest normalized number

▪ Smallest norm: ± 1.0…0two×2-126 = ± 2-126

▪ Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number
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Floating Point Decoding Flow Chart

10

FP Bits
What is the 
value of E?

What is the 
value of M?

−1 S ×∞

NaN

−1 S × 0.M × 21−bias

−1 S × 1.M × 2E−bias

all 1’s

all 0’s

anything else

anything 
else

all 0’s

= special case
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Floating Point Topics

❖ Fractional binary numbers

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that we won’t cover

▪ It’s a 58-page standard…
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Tiny Floating Point Representation

❖ We will use the following 8-bit floating point 
representation to illustrate some key points:

❖ Assume that it has the same properties as IEEE 
floating point:

▪ bias = 

▪ encoding of −0 = 

▪ encoding of +∞ =

▪ encoding of the largest (+) normalized # = 

▪ encoding of the smallest (+) normalized # = 
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Distribution of Values (Review)

❖ What ranges are NOT representable?

▪ Between largest norm and infinity

▪ Between zero and smallest denorm

▪ Between norm numbers?

❖ Given a FP number, what’s the next largest 
representable number?

▪ What is this “step” when Exp = 0?

▪ What is this “step” when Exp = 100?

❖ Distribution of values is denser toward zero
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Floating Point Rounding

❖ The IEEE 754 standard actually specifies different 
rounding modes:

▪ Round to nearest, ties to nearest even digit

▪ Round toward +∞ (round up)

▪ Round toward −∞ (round down)

▪ Round toward 0 (truncation)

❖ In our tiny example:

▪ Man = 1.001 01 rounded to M = 0b001

▪ Man = 1.001 11 rounded to M = 0b010

▪ Man = 1.001 10 rounded to M = 0b010

▪ Man = 1.000 10 rounded to M = 0b000
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Floating Point Operations:  Basic Idea

❖

❖

❖ Basic idea for floating point operations:

▪ First, compute the exact result

▪ Then round the result to make it fit into the specified 
precision (width of M)
• Possibly over/underflow if exponent outside of range
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S E M

Value = (-1)S×Mantissa×2Exponent
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Mathematical Properties of FP Operations

❖ Overflow yields ±∞ and underflow yields 0

❖ Floats with value ±∞ and NaN can be used in 
operations

▪ Result usually still ±∞ or NaN, but not always intuitive

❖ Floating point operations do not work like real math, 
due to rounding

▪ Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)
0 3.14

▪ Not distributive: 100*(0.1+0.2) !=  100*0.1+100*0.2

30.000000000000003553 30

▪ Not cumulative
• Repeatedly adding a very small number to a large one may do nothing
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Floating Point Encoding Flow Chart
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= special case

Value 𝑣 to 
encode

Is 𝑣 not a 
number?

±∞
E = all 1’s
M = all 0’s

NaN
E = all 1’s
M ≠ all 0’s

Yes

Is 𝑣 , when 
rounded, 
≥ FOver? 

Is 𝑣 , when 
rounded, 

< FDenorm? 

Is 𝑣 , when 
rounded, 
< FUnder? 

No

Yes

Normed
E = Exp + bias
1.M = Man

No

Yes

Denormed
E = all 0’s
0.M = Man

±0
E = all 0’s
M = all 0’s

Yes

No

No

This is extra 
(non-testable) 

material
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Limits of Interest

❖ The following thresholds will help give you a sense of 
when certain outcomes come into play, but don’t 
worry about the specifics:

▪ FOver = 2bias+1 = 28

• This is just larger than the largest representable normalized number

▪ FDenorm = 21−bias = 2−6

• This is the smallest representable normalized number

▪ FUnder = 21−bias−𝑚 = 2−9

• 𝑚 is the width of the mantissa field

• This is the smallest representable denormalized number
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Floating Point in C

❖ Two common levels of precision:
single precision (32-bit)

double precision (64-bit)

❖ to get and 
constants

❖ for additional constants

❖ Equality (==) comparisons between floating point 
numbers are tricky, and often return unexpected 
results, so just avoid them!
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Floating Point Conversions in C

❖ Casting between , , and changes
the bit representation

▪ →
• May be rounded (not enough bits in mantissa: 23)

• Overflow impossible

▪ or →
• Exact conversion (all 32-bit s are representable)

▪ →
• Depends on word size (32-bit is exact, 64-bit may be rounded)

▪ or →
• Truncates fractional part (rounded toward zero)

• “Not defined” when out of range or NaN:  generally sets to TMin
(even if the value is a very big positive)
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Exploration Question

❖ We execute the following code in C.  How many bytes 
are the same (value and position) between and ?

A. 0 bytes

B. 1 byte

C. 2 bytes

D. 3 bytes

E. We’re lost…
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Discussion Questions

❖ How do you feel about floating point?

▪ Do you feel like the limitations are acceptable?

▪ Does this affect the way you’ll think about non-integer 
arithmetic in the future?

▪ Are there any changes or different encoding schemes that 
you think would be an improvement?
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More on Floating Point History

❖ Early days

▪ First design with floating-point arithmetic in 1914 
by Leonardo Torres y Quevedo

▪ Implementations started in 1940 by Konrad Zuse, 
but with differing field lengths (usually not 
summing to 32 bits) and different subsets of the 
special cases

❖ IEEE 754 standard created in 1985

▪ Primary architect was William Kahan, who won a 
Turing Award for this work

▪ Standardized bit encoding, well-defined behavior 
for all arithmetic operations
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Floating Point in the “Wild”

❖ 3 formats from IEEE 754 standard widely used in 
computer hardware and languages

▪ In C, called , , 

❖ Common applications:

▪ 3D graphics: textures, rendering, rotation, translation

▪ “Big Data”: scientific computing at scale, machine learning

❖ Non-standard formats in domain-specific areas:

▪ Bfloat16: training ML models; 
range more valuable than precision

▪ TensorFloat-32: Nvidia-specific 
hardware for Tensor Core GPUs

24

Type
S 

bits
E 

bits
M 

bits
Total 
bits

Half-precision 1 5 10 16

Bfloat16 1 8 7 16

TensorFloat-32 1 8 10 19

Single-precision 1 8 23 32
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Floating Point Summary

❖ Floats also suffer from the fixed number of bits 
available to represent them 
▪ Can get overflow/underflow

▪ “Gaps” produced in representable numbers means we can 
lose precision, unlike s
• Some “simple fractions” have no exact representation (e.g., 0.2)

• “Every operation gets a slightly wrong result”

❖ Floating point arithmetic not associative or 
distributive
▪ Mathematically equivalent ways of writing an expression 

may compute different results

❖ Never test floating point values for equality!

❖ Careful when converting between s and s!
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Number Representation Really Matters

❖ 1991: Patriot missile targeting error
▪ clock skew due to conversion from integer to floating point

❖ 1996: Ariane 5 rocket exploded  ($1 billion)
▪ overflow converting 64-bit floating point to 16-bit integer

❖ 2000: Y2K problem
▪ limited (decimal) representation: overflow, wrap-around

❖ 2038: Unix epoch rollover
▪ Unix epoch = seconds since 12am, January 1, 1970

▪ signed 32-bit integer representation rolls over to TMin in 2038

❖ Other related bugs:
▪ 1982: Vancouver Stock Exchange 10% error in less than 2 years

▪ 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)

▪ 1997: USS Yorktown “smart” warship stranded: divide by zero

▪ 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
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Summary

❖ Floating point encoding has many limitations

▪ Overflow, underflow, rounding

▪ Rounding is a HUGE issue due to limited mantissa bits and 
gaps that are scaled by the value of the exponent

▪ Floating point arithmetic is NOT associative or distributive

❖ Converting between integral and floating point data 
types does change the bits 
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E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN
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An example that applies the IEEE Floating Point 
concepts to a smaller (8-bit) representation scheme.  
These slides expand on material covered today, so 
while you don’t need to read these, the information is 
“fair game.”
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Tiny Floating Point Example

❖ 8-bit Floating Point Representation

▪ The sign bit is in the most significant bit (MSB)

▪ The next four bits are the exponent, with a bias of 24-1–1 = 7

▪ The last three bits are the mantissa

❖ Same general form as IEEE Format

▪ Normalized binary scientific point notation

▪ Similar special cases for 0, denormalized numbers, NaN, ∞
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Dynamic Range (Positive Only)

30

S E    M Exp Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001  -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1    = 1

0 0111 001 0 9/8*1    = 9/8

0 0111 010 0 10/8*1   = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers
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Special Properties of Encoding

❖ Floating point zero (0+) exactly the same bits as integer zero
▪ All bits = 0

❖ Can (Almost) Use Unsigned Integer Comparison
▪ Must first compare sign bits

▪ Must consider 0- = 0+ = 0

▪ NaNs problematic

• Will be greater than any other values

• What should comparison yield?

▪ Otherwise OK

• Denorm vs. normalized

• Normalized vs. infinity
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