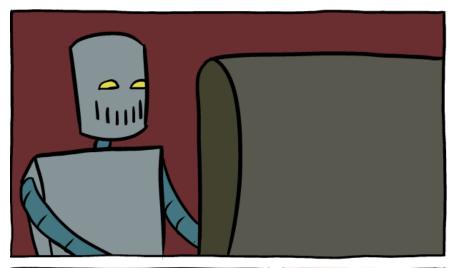
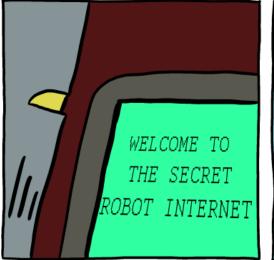
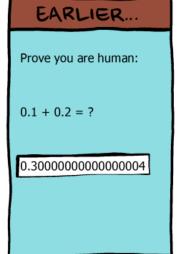
Floating Point II


CSE 351 Autumn 2021


Instructor:


Justin Hsia

Teaching Assistants:

Allie Pfleger Anirudh Kumar **Assaf Vayner** Atharva Deodhar Celeste Zeng Dominick Ta Francesca Wang Hamsa Shankar Isabella Nguyen Joy Dang Julia Wang Maggie Jiang Monty Nitschke **Morel Fotsing** Sanjana Chintalapati

http://www.smbc-comics.com/?id=2999

Administrivia

- hw6 due Friday, hw7 due Monday
- Lab 1a: last chance to submit is tonight @ 11:59 pm
 - One submission per partnership
 - Make sure you check the Gradescope autograder output!
 - Grades hopefully released by end of Sunday (10/17)
- Lab 1b due Monday (10/18)
 - Submit aisle_manager.c, store_client.c, and lab1Bsynthesis.txt
- Section tomorrow on Integers and Floating Point

Getting Help with 351

- Lecture recordings, readings, inked slides
- Form a study group!
 - Good for everything but labs, which should be done in pairs
 - Communicate regularly, use the class terminology, ask and answer each others' questions, show up to OH together
- Attend office hours
 - Use the OH queue, but can also chat with other students there – help each other learn!
- Post on Ed Discussion
- Request a 1-on-1 meeting
 - Available on a limited basis for special circumstances

Reading Review

- Terminology:
 - Special cases
 - Denormalized numbers
 - +∞
 - Not-a-Number (NaN)
 - Limits of representation
 - Overflow
 - Underflow
 - Rounding
- Questions from the Reading?

Review Questions

- What is the value of the following floats?

 - $0xFF800000 \Rightarrow S=1, E=all 1's, M=0 \Rightarrow [-\infty]$ Objining two one
- For the following code, what is the smallest value of n that will encounter a limit of representation?

float
$$f = 1.0$$
; $// 2^{0}$
for (int $i = 0$; $i < n$;

Floating Point Encoding Summary (Review)

	E	M	Interpretation
smallest E { (all 0's)	0x00	0	± 0
	0x00	non-zero	± denorm num
everything { else	0x01 – 0xFE	anything	± norm num
largest E	OxFF	0	± ∞
largest E) (all 1's)	OxFF	non-zero	NaN

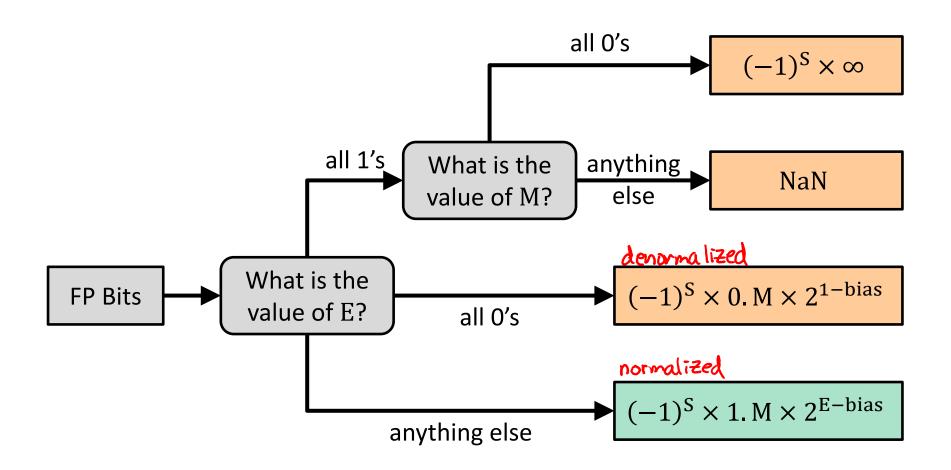
Special Cases

- But wait... what happened to zero?
 - Special case: E and M all zeros = 0
- \star E = 0xFF, M = 0: $\pm \infty$
 - e.g., division by 0
 - Still work in comparisons!
- \star E = 0xFF, M \neq 0: Not a Number (NaN)
 - e.g., square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging (tells you cause of NaN)

New Representation Limits

- ❖ New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$
- New numbers closest to 0:
 - E = 0x00 taken; next smallest is E = 0x01
 - a = $1.0...0_2 \times 2^{-126} = 2^{-126}$ b = $1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$
- Gaps
- Normalization and implicit 1 are to blame
- Special case: E = 0, M ≠ 0 are denormalized numbers (0,M) 1.M normalized:

Denorm Numbers

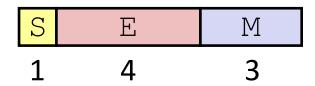

This is extra (non-testable) material

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$

So much closer to 0

- Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

Floating Point Decoding Flow Chart

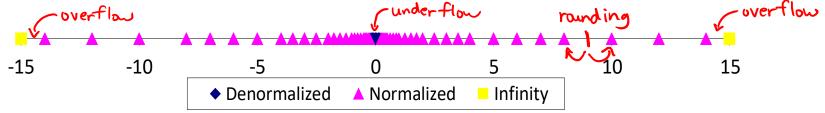

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Tiny Floating Point Representation

• We will use the following 8-bit floating point representation to illustrate some key points:


- Assume that it has the same properties as IEEE floating point:
 - bias = $2^{w-1}-1 = 2^{4-1}-1 = 7$

 - encoding of -0 = 0 1 000 $\infty = 0 \times 80$ encoding of $+\infty = 0$ 0 111/1 000 = 0×78
 - encoding of the largest (+) normalized # = 0b 0 111/0 111 = 0x77
 - encoding of the smallest (+) normalized # = 060000×000

Distribution of Values (Review)

- What ranges are NOT representable?
 - Between largest norm and infinity Overflow (Exp too large)
 - Between zero and smallest denorm Underflow (Exp too small)
 - Between norm numbers? Rounding
- ❖ Given a FP number, what's the next largest representable number?

 if M=0b 0...o0, then $2^{\text{Exp}} \times 1.0$ if M=0b 0...o1, then $2^{\text{Exp}} \times 1.0$ what is this "step" when Exp = 0? 2^{-23}
 - What is this "step" when Exp = 100? 2⁺⁺
- Distribution of values is denser toward zero

Floating Point Rounding

This is extra (non-testable) material

The IEEE 754 standard actually specifies different rounding modes:

Round to nearest, ties to nearest even digit

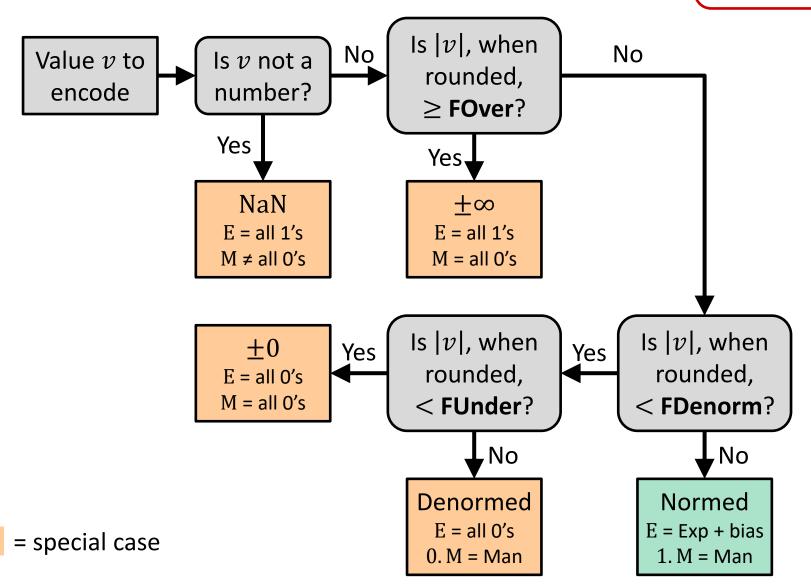
- Round toward $+\infty$ (round up)
- Round toward $-\infty$ (round down)
- Round toward 0 (truncation)
- In our tiny example:

- Man = 1.001/01 rounded to M = 0b001 ()
- Man = 1.001/11 rounded to M = $0b010 (\mu \rho)$
- Man = 1.001/10 rounded to M = 0b010 (up)
- Man = 1.000/10 rounded to M = 0b000 (ADWN)

Floating Point Operations: Basic Idea

Value = $(-1)^{S} \times Mantissa \times 2^{Exponent}$

- $\star x +_f y = Round(x + y)$
- $\star x \star_f y = Round(x \star y)$
- Basic idea for floating point operations:
 - First, compute the exact result
 - Then round the result to make it fit into the specified precision (width of M)
 - Possibly over/underflow if exponent outside of range


Mathematical Properties of FP Operations

- * Overflow yields $\pm \infty$ and underflow yields 0
- ❖ Floats with value ±∞ and NaN can be used in operations
 - Result usually still $\pm \infty$ or NaN, but not always intuitive
- Floating point operations do not work like real math, due to rounding

 - Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2
 30.00000000000003553 30
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing

Floating Point Encoding Flow Chart

This is extra (non-testable) material

Limits of Interest

This is extra (non-testable) material

- The following thresholds will help give you a sense of when certain outcomes come into play, but don't worry about the specifics:
 - **FOver** = $2^{\text{bias}+1} = 2^8$
 - This is just larger than the largest representable normalized number
 - **FDenorm** = $2^{1-\text{bias}} = 2^{-6}$
 - This is the smallest representable normalized number
 - FUnder = $2^{1-\text{bias}-m} = 2^{-9}$
 - m is the width of the mantissa field
 - This is the smallest representable denormalized number

Floating Point in C

Two common levels of precision:

float	1.0f	single precision (32-bit)
double	1.0	double precision (64-bit)

- #include <math.h> to get INFINITY and NAN constants
- #include <float.h> for additional constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

 instead use abs (f1-f2) < 2-20

 t.

Floating Point Conversions in C

- Casting between int, float, and double changes the bit representation
 - int → float
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - int or float → double
 - Exact conversion (all 32-bit ints are representable)
 - long → double
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - double or float → int
 - Truncates fractional part (rounded toward zero)
 - "Not defined" when out of range or NaN: generally sets to TMin (even if the value is a very big positive)

Exploration Question

• We execute the following code in C. How many bytes are the same (value and position) between i and f?

```
int i = 384; // 2^8 + 2^7
float f = (float) i;
```

- A. 0 bytes
- B. 1 byte
- C. 2 bytes
- D. 3 bytes
- E. We're lost...

```
= 0b 1/1000/0000
= 1.1<sub>2</sub> × 2<sup>8</sup>
S = 0
E = 8 + 127 = 135
= 0b 1000 0111
M = 0b 10...0
0b 0 1000 0111 100/...0
```

Discussion Questions

- How do you feel about floating point?
 - Do you feel like the limitations are acceptable?

Does this affect the way you'll think about non-integer arithmetic in the future?

• Are there any changes or different encoding schemes that you think would be an improvement?

More on Floating Point History

- Early days
 - First design with floating-point arithmetic in 1914
 by Leonardo Torres y Quevedo
 - Implementations started in 1940 by Konrad Zuse, but with differing field lengths (usually not summing to 32 bits) and different subsets of the special cases

- Primary architect was William Kahan, who won a Turing Award for this work
- Standardized bit encoding, well-defined behavior for all arithmetic operations

Floating Point in the "Wild"

- 3 formats from IEEE 754 standard widely used in computer hardware and languages
 - In C, called float, double, long double
- Common applications:
 - 3D graphics: textures, rendering, rotation, translation
 - "Big Data": scientific computing at scale, machine learning
- Non-standard formats in domain-specific areas:
 - Bfloat16: training ML models; range more valuable than precision
 - TensorFloat-32: Nvidia-specific hardware for Tensor Core GPUs

Туре	S bits	E bits	M bits	Total bits
Half-precision	1	5	10	16
Bfloat16	1	8	7	16
TensorFloat-32	1	8	10	19
Single-precision	1	8	23	32

Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - "Gaps" produced in representable numbers means we can lose precision, unlike ints
 - Some "simple fractions" have no exact representation (e.g., 0.2)
 - "Every operation gets a slightly wrong result"
- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results
- Never test floating point values for equality!
- Careful when converting between ints and floats!

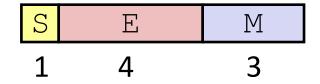
Number Representation Really Matters

- 1991: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded (\$1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038

Other related bugs:

- 1982: Vancouver Stock Exchange 10% error in less than 2 years
- 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
- 1997: USS Yorktown "smart" warship stranded: divide by zero
- 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Summary


E	M	Meaning
0x00	0	± 0
0x00	non-zero	± denorm num
0x01 – 0xFE	anything	± norm num
0xFF	0	± ∞
0xFF	non-zero	NaN

- Floating point encoding has many limitations
 - Overflow, underflow, rounding
 - Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
 - Floating point arithmetic is NOT associative or distributive
- Converting between integral and floating point data types does change the bits

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
 - The last three bits are the mantissa

- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	SE	M	Exp	Value	
	0 0000	000	-6	0	
	0 0000	001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512	
numbers	•••				
	0 0000	110	-6	6/8*1/64 = 6/512	
	0 0000) 111	-6	7/8*1/64 = 7/512	largest denorm
	0 0001	000	-6	8/8*1/64 = 8/512	smallest norm
	0 0001	001	-6	9/8*1/64 = 9/512	
	•••				
	0 0110	110	-1	14/8*1/2 = 14/16	
Ni a was a lissa al	0 0110) 111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 0111	000	0	8/8*1 = 1	
numbers	0 0111	001	0	9/8*1 = 9/8	closest to 1 above
	0 0111	010	0	10/8*1 = 10/8	
	0 1110	110	7	14/8*128 = 224	
	0 1110) 111	7	15/8*128 = 240	largest norm
	0 1111	000	n/a	inf	

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity