
CSE351, Autumn 2021L07: Floating Point II

Floating Point II
CSE 351 Autumn 2021

Instructor:
Justin Hsia

Teaching Assistants:
Allie Pfleger
Anirudh Kumar
Assaf Vayner
Atharva Deodhar
Celeste Zeng
Dominick Ta
Francesca Wang
Hamsa Shankar
Isabella Nguyen
Joy Dang
Julia Wang
Maggie Jiang
Monty Nitschke
Morel Fotsing
Sanjana Chintalapati

http://www.smbc-comics.com/?id=2999

http://www.smbc-comics.com/?id=2999

CSE351, Autumn 2021L07: Floating Point II

Administrivia

❖ hw6 due Friday, hw7 due Monday

❖ Lab 1a: last chance to submit is tonight @ 11:59 pm

▪ One submission per partnership

▪ Make sure you check the Gradescope autograder output!

▪ Grades hopefully released by end of Sunday (10/17)

❖ Lab 1b due Monday (10/18)

▪ Submit , , and

❖ Section tomorrow on Integers and Floating Point

2

CSE351, Autumn 2021L07: Floating Point II

Getting Help with 351

❖ Lecture recordings, readings, inked slides

❖ Form a study group!

▪ Good for everything but labs, which should be done in pairs

▪ Communicate regularly, use the class terminology, ask and
answer each others’ questions, show up to OH together

❖ Attend office hours

▪ Use the OH queue, but can also chat with other students
there – help each other learn!

❖ Post on Ed Discussion

❖ Request a 1-on-1 meeting

▪ Available on a limited basis for special circumstances

3

CSE351, Autumn 2021L07: Floating Point II

Reading Review

❖ Terminology:

▪ Special cases
• Denormalized numbers

• ±∞

• Not-a-Number (NaN)

▪ Limits of representation
• Overflow

• Underflow

• Rounding

❖ Questions from the Reading?

4

CSE351, Autumn 2021L07: Floating Point II

Review Questions

❖ What is the value of the following floats?

▪

▪

❖ For the following code, what is the smallest value of
that will encounter a limit of representation?

5

CSE351, Autumn 2021L07: Floating Point II

Floating Point Encoding Summary (Review)

E M Interpretation

0x00 0 ± 0

0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num

0xFF 0 ± ∞

0xFF non-zero NaN

CSE351, Autumn 2021L07: Floating Point II

Special Cases

❖ But wait… what happened to zero?

▪ Special case: E and M all zeros = 0

▪ Two zeros! But at least 0x00000000 = 0 like integers

❖ E = 0xFF, M = 0: ± ∞

▪ e.g., division by 0

▪ Still work in comparisons!

❖ E = 0xFF, M ≠ 0: Not a Number (NaN)

▪ e.g., square root of negative number, 0/0, ∞–∞

▪ NaN propagates through computations

▪ Value of M can be useful in debugging

7

CSE351, Autumn 2021L07: Floating Point II

New Representation Limits

❖ New largest value (besides ∞)?

▪ E = 0xFF has now been taken!

▪ E = 0xFE has largest: 1.1…12×2127 = 2128 – 2104

❖ New numbers closest to 0:

▪ E = 0x00 taken; next smallest is E = 0x01

▪ a = 1.0…02×2-126 = 2-126

▪ b = 1.0…012×2-126 = 2-126 + 2-149

▪ Normalization and implicit 1 are to blame

▪ Special case: E = 0, M ≠ 0 are denormalized numbers

8

0
+∞-∞

Gaps!

a

b

CSE351, Autumn 2021L07: Floating Point II

Denorm Numbers

❖ Denormalized numbers

▪ No leading 1

▪ Uses implicit exponent of –126 even though E = 0x00

❖ Denormalized numbers close the gap between zero
and the smallest normalized number

▪ Smallest norm: ± 1.0…0two×2-126 = ± 2-126

▪ Smallest denorm: ± 0.0…01two×2-126 = ± 2-149

• There is still a gap between zero and the smallest denormalized
number

9

So much
closer to 0

This is extra
(non-testable)

material

CSE351, Autumn 2021L07: Floating Point II

Floating Point Decoding Flow Chart

10

FP Bits
What is the
value of E?

What is the
value of M?

−1 S ×∞

NaN

−1 S × 0.M × 21−bias

−1 S × 1.M × 2E−bias

all 1’s

all 0’s

anything else

anything
else

all 0’s

= special case

CSE351, Autumn 2021L07: Floating Point II

Floating Point Topics

❖ Fractional binary numbers

❖ IEEE floating-point standard

❖ Floating-point operations and rounding

❖ Floating-point in C

❖ There are many more details that we won’t cover

▪ It’s a 58-page standard…
11

CSE351, Autumn 2021L07: Floating Point II

Tiny Floating Point Representation

❖ We will use the following 8-bit floating point
representation to illustrate some key points:

❖ Assume that it has the same properties as IEEE
floating point:

▪ bias =

▪ encoding of −0 =

▪ encoding of +∞ =

▪ encoding of the largest (+) normalized # =

▪ encoding of the smallest (+) normalized # =

12

S E M

1 4 3

CSE351, Autumn 2021L07: Floating Point II

Distribution of Values (Review)

❖ What ranges are NOT representable?

▪ Between largest norm and infinity

▪ Between zero and smallest denorm

▪ Between norm numbers?

❖ Given a FP number, what’s the next largest
representable number?

▪ What is this “step” when Exp = 0?

▪ What is this “step” when Exp = 100?

❖ Distribution of values is denser toward zero

13

-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity

Overflow (Exp too large)

Underflow (Exp too small)

Rounding

CSE351, Autumn 2021L07: Floating Point II

Floating Point Rounding

❖ The IEEE 754 standard actually specifies different
rounding modes:

▪ Round to nearest, ties to nearest even digit

▪ Round toward +∞ (round up)

▪ Round toward −∞ (round down)

▪ Round toward 0 (truncation)

❖ In our tiny example:

▪ Man = 1.001 01 rounded to M = 0b001

▪ Man = 1.001 11 rounded to M = 0b010

▪ Man = 1.001 10 rounded to M = 0b010

▪ Man = 1.000 10 rounded to M = 0b000
14

This is extra
(non-testable)

material

S E M

1 4 3

CSE351, Autumn 2021L07: Floating Point II

Floating Point Operations: Basic Idea

❖

❖

❖ Basic idea for floating point operations:

▪ First, compute the exact result

▪ Then round the result to make it fit into the specified
precision (width of M)
• Possibly over/underflow if exponent outside of range

15

S E M

Value = (-1)S×Mantissa×2Exponent

CSE351, Autumn 2021L07: Floating Point II

Mathematical Properties of FP Operations

❖ Overflow yields ±∞ and underflow yields 0

❖ Floats with value ±∞ and NaN can be used in
operations

▪ Result usually still ±∞ or NaN, but not always intuitive

❖ Floating point operations do not work like real math,
due to rounding

▪ Not associative: (3.14+1e100)–1e100 != 3.14+(1e100–1e100)
0 3.14

▪ Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2

30.000000000000003553 30

▪ Not cumulative
• Repeatedly adding a very small number to a large one may do nothing

16

CSE351, Autumn 2021L07: Floating Point II

Floating Point Encoding Flow Chart

17

= special case

Value 𝑣 to
encode

Is 𝑣 not a
number?

±∞
E = all 1’s
M = all 0’s

NaN
E = all 1’s
M ≠ all 0’s

Yes

Is 𝑣 , when
rounded,
≥ FOver?

Is 𝑣 , when
rounded,

< FDenorm?

Is 𝑣 , when
rounded,
< FUnder?

No

Yes

Normed
E = Exp + bias
1.M = Man

No

Yes

Denormed
E = all 0’s
0.M = Man

±0
E = all 0’s
M = all 0’s

Yes

No

No

This is extra
(non-testable)

material

CSE351, Autumn 2021L07: Floating Point II

Limits of Interest

❖ The following thresholds will help give you a sense of
when certain outcomes come into play, but don’t
worry about the specifics:

▪ FOver = 2bias+1 = 28

• This is just larger than the largest representable normalized number

▪ FDenorm = 21−bias = 2−6

• This is the smallest representable normalized number

▪ FUnder = 21−bias−𝑚 = 2−9

• 𝑚 is the width of the mantissa field

• This is the smallest representable denormalized number

18

This is extra
(non-testable)

material

CSE351, Autumn 2021L07: Floating Point II

Floating Point in C

❖ Two common levels of precision:
single precision (32-bit)

double precision (64-bit)

❖ to get and
constants

❖ for additional constants

❖ Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!

19

!!!

CSE351, Autumn 2021L07: Floating Point II

Floating Point Conversions in C

❖ Casting between , , and changes
the bit representation

▪ →
• May be rounded (not enough bits in mantissa: 23)

• Overflow impossible

▪ or →
• Exact conversion (all 32-bit s are representable)

▪ →
• Depends on word size (32-bit is exact, 64-bit may be rounded)

▪ or →
• Truncates fractional part (rounded toward zero)

• “Not defined” when out of range or NaN: generally sets to TMin
(even if the value is a very big positive)

20

!!!

CSE351, Autumn 2021L07: Floating Point II

Exploration Question

❖ We execute the following code in C. How many bytes
are the same (value and position) between and ?

A. 0 bytes

B. 1 byte

C. 2 bytes

D. 3 bytes

E. We’re lost…

21

CSE351, Autumn 2021L07: Floating Point II

Discussion Questions

❖ How do you feel about floating point?

▪ Do you feel like the limitations are acceptable?

▪ Does this affect the way you’ll think about non-integer
arithmetic in the future?

▪ Are there any changes or different encoding schemes that
you think would be an improvement?

22

CSE351, Autumn 2021L07: Floating Point II

More on Floating Point History

❖ Early days

▪ First design with floating-point arithmetic in 1914
by Leonardo Torres y Quevedo

▪ Implementations started in 1940 by Konrad Zuse,
but with differing field lengths (usually not
summing to 32 bits) and different subsets of the
special cases

❖ IEEE 754 standard created in 1985

▪ Primary architect was William Kahan, who won a
Turing Award for this work

▪ Standardized bit encoding, well-defined behavior
for all arithmetic operations

23

Kahan

Zuse

Quevedo

CSE351, Autumn 2021L07: Floating Point II

Floating Point in the “Wild”

❖ 3 formats from IEEE 754 standard widely used in
computer hardware and languages

▪ In C, called , ,

❖ Common applications:

▪ 3D graphics: textures, rendering, rotation, translation

▪ “Big Data”: scientific computing at scale, machine learning

❖ Non-standard formats in domain-specific areas:

▪ Bfloat16: training ML models;
range more valuable than precision

▪ TensorFloat-32: Nvidia-specific
hardware for Tensor Core GPUs

24

Type
S

bits
E

bits
M

bits
Total
bits

Half-precision 1 5 10 16

Bfloat16 1 8 7 16

TensorFloat-32 1 8 10 19

Single-precision 1 8 23 32

CSE351, Autumn 2021L07: Floating Point II

Floating Point Summary

❖ Floats also suffer from the fixed number of bits
available to represent them
▪ Can get overflow/underflow

▪ “Gaps” produced in representable numbers means we can
lose precision, unlike s
• Some “simple fractions” have no exact representation (e.g., 0.2)

• “Every operation gets a slightly wrong result”

❖ Floating point arithmetic not associative or
distributive
▪ Mathematically equivalent ways of writing an expression

may compute different results

❖ Never test floating point values for equality!

❖ Careful when converting between s and s!
25

CSE351, Autumn 2021L07: Floating Point II

Number Representation Really Matters

❖ 1991: Patriot missile targeting error
▪ clock skew due to conversion from integer to floating point

❖ 1996: Ariane 5 rocket exploded ($1 billion)
▪ overflow converting 64-bit floating point to 16-bit integer

❖ 2000: Y2K problem
▪ limited (decimal) representation: overflow, wrap-around

❖ 2038: Unix epoch rollover
▪ Unix epoch = seconds since 12am, January 1, 1970

▪ signed 32-bit integer representation rolls over to TMin in 2038

❖ Other related bugs:
▪ 1982: Vancouver Stock Exchange 10% error in less than 2 years

▪ 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)

▪ 1997: USS Yorktown “smart” warship stranded: divide by zero

▪ 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
26

CSE351, Autumn 2021L07: Floating Point II

Summary

❖ Floating point encoding has many limitations

▪ Overflow, underflow, rounding

▪ Rounding is a HUGE issue due to limited mantissa bits and
gaps that are scaled by the value of the exponent

▪ Floating point arithmetic is NOT associative or distributive

❖ Converting between integral and floating point data
types does change the bits

27

E M Meaning
0x00 0 ± 0
0x00 non-zero ± denorm num

0x01 – 0xFE anything ± norm num
0xFF 0 ± ∞
0xFF non-zero NaN

CSE351, Autumn 2021L07: Floating Point II

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation scheme.
These slides expand on material covered today, so
while you don’t need to read these, the information is
“fair game.”

28

CSE351, Autumn 2021L07: Floating Point II

Tiny Floating Point Example

❖ 8-bit Floating Point Representation

▪ The sign bit is in the most significant bit (MSB)

▪ The next four bits are the exponent, with a bias of 24-1–1 = 7

▪ The last three bits are the mantissa

❖ Same general form as IEEE Format

▪ Normalized binary scientific point notation

▪ Similar special cases for 0, denormalized numbers, NaN, ∞

29

S E M

1 4 3

CSE351, Autumn 2021L07: Floating Point II

Dynamic Range (Positive Only)

30

S E M Exp Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized
numbers

Normalized
numbers

CSE351, Autumn 2021L07: Floating Point II

Special Properties of Encoding

❖ Floating point zero (0+) exactly the same bits as integer zero
▪ All bits = 0

❖ Can (Almost) Use Unsigned Integer Comparison
▪ Must first compare sign bits

▪ Must consider 0- = 0+ = 0

▪ NaNs problematic

• Will be greater than any other values

• What should comparison yield?

▪ Otherwise OK

• Denorm vs. normalized

• Normalized vs. infinity

31

