YA UNIVERSITY of WASHINGTON LO5: Integers II

CSES351, Autumn 2021

Integers i
CSE 351 Autumn 2021

Instructor: Teaching Assistants:
Justin Hsia Allie Pfleger Anirudh Kumar Assaf Vayner
Atharva Deodhar Celeste Zeng Dominick Ta
Francesca Wang Hamsa Shankar Isabella Nguyen
Joy Dang Julia Wang Maggie Jliang
Monty Nitschke Morel Fotsing Sanjana Chintalapati
|oea 2. o 1306... 1,307... | |...327%67...-227%8...| | -32767...-32,% ...

2 e || S| bERS &
N e P P
LA—A A A A IAA_A AN <

A || A =5

http://xkcd.com/571/

http://xkcd.com/571/

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Relevant Course Information

+» hw4 due 10/11, hw5 due 10/13
+» Lab 1a due Monday (10/11)

= Use ptestanddlc.py to check your solution for
correctness (on the CSE Linux environment)

= Submit pointer.c and lablAsynthesis.txtto
Gradescope

- Make sure you pass the File and Compilation Check — all the correct
files were found and there were no compilation or runtime errors

+» Lab 1b released today, due 10/18

= Bit manipulation on a custom encoding scheme

"= Bonus slides at the end of today’s lecture have relevant
examples

YA UNIVERSITY of WASHINGTON LO5: Integers II

CSES351, Autumn 2021

Runnable Code Snippets on Ed

+» Ed allows you to embed runnable code snippets (e.g.,
readings, homework, discussion)

= These are editable and rerunnable!

" Hide compiler warnings, but will show compiler errors and
runtime errors

+» Suggested use

" Good for experimental questions about basic behaviors in C

= NOT entirely consistent with the CSE Linux environment, so
should not be used for any lab-related work

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Reading Review

+» Terminology:
= UM1in, UMax, TM1n, TMax
" Type casting: implicit vs. explicit
" |nteger extension: zero extension vs. sigh extension
" Modular arithmetic and arithmetic overflow
= Bit shifting: left shift, logical right shift, arithmetic right shift

% Questions from the Reading?

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Review Questions sk

ceprowt Z =& nambers \[‘M)f" heﬁif' e

+» What is th/e/OaIue (and encoding) of TM1 n for a
fICtlogf| ’6 bgc vgld% integer data type? -2 =2 ‘j’S_ZJ

+~ Forunsigned char uc = @xAl,,what are the

produced data for the cast (unsigned shgﬁ:)uc?

unsigned —> W / O%ODA'\

+» What is the result of the following expressions?
" (signed char)uc >> 2

" (unsigned char)uc >+> 3
sgver: Ob 10 (0 OO T E55 01110 1000 = [Ongk

unssned : Ob (OO0 OLOT e, Ob0O0| O\00 ‘—‘-rox 1"&,

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Why Does Two’s Complement Work?

+ For all representable positive integers x, we want:

1. bit representation of x
addtive trep . f
- + bit representation of —x
|nVersSe

0 (ignoring the carry-out bit)

" What are the 8-bit negative encodings for the follc‘)wing?
VL

D 24007 O 1) 80 - IR 118411}

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Why Does Two’s Complement Work?

+ For all representable positive integers x, we want: s,

bit representation of x X+ C’\' X> N
+ bit representation of —x X 4+ () = -
0 (ignoring the carry-out bit)

®= What are the 8-bit negative encodings for the following?

00000001 00000010 11000011
+ 11111111 + 11111110 + 00111101
00000000 00000000 200000000

These are the bitwise complement plus 1!
-x == ~x + 1

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Integers

+~ Binary representation of integers
= Unsigned and signed
= CastinginC
+» Consequences of finite width representations

= Sign extension, overflow

+ Shifting and arithmetic operations

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Signed/Unsigned Conversion Visualized

+» Two’s Complement — Unsigned _
P 5 pMaxx =0W1...1=72%-1
= Ordering Inversion UMax — 1

" Negative — Big Positive

0k10...0F 2"
TMax +1 .
) B / _ Unsigned
771 = 0bo/..| \TME ® *® TMax Range
=00...0

2's Complement 0

® *® 0/UMin
Range 1 .J/
-2

1" =0L10...0 4 TMin|

‘_.
|

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Values To Remember (Review)

+» Unsigned Values +» Two’s Complement Values
= UMin = 0b00..0 = TMin = 0b10..0
= 0 — _2W—1
= UMax = O0bll..l = TMax = 0b01..1
= 2V 1 - 2W—1_1
= —1 = 0bll..1

+» Example: Values forw = 64

UMax 18,446,744,073,709,551,615 L N 2 - =
TMax 9,223,372,036,854,775,807 TE OEE OEE FE O OEE FE FE OFE

TMin -9,223,372,036,854,775,808 80 00 00 00 00 00 00 0O
-1 -1 FEOEE FRORE FE OEE FE R

0 0 00 00 00 00 00 00 00 0O

10

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

In C: Signed vs. Unsigned (Review)

+» Casting
" Bits are unchanged, just interpreted differently!
- int tx, ty;
- unsigned int ux, uy;
= Explicit casting \
+ tx = (int) ux; (newtype) expression

 uy = (unsigned int) ty;

" Implicit casting can occur during assignments or function
calls cast o ‘\'Z\r@v:l' vari able/ [mroanei‘er 'f-y/)e

o IX = ux;
e uy =ty; Cﬂ\so 7'“("75\“‘/ o@ars with Prird‘(ﬁvm-d Sred—C‘\efS)

11

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Casting Surprises (Review) 111

+ Integer literals (constants)

= By default, integer constants are considered signed integers

- Hex constants already have an explicit binary representation

= Use “U” (or “u”) suffix to explicitly force unsigned
- Examples: 0U, 42949567259u

+ Expression Evaluation

®" When you mixed unsigned and signed in a single expression,
then signed values are implicitly cast to unsigned [/ wnsigned

: M ‘\Abhﬂ'\nO\ "
" Including comparison operators <, >, ==, <=, >= fes

12

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Practice Question 1

+» Assuming 8-bit data (i.e., bit position 7 is the MSB),
what will the following expression evaluate to?
" UMin =0, UMax = 255, TMin =-128, TMax =127

signea\ s:’gheo\ G bt side ;ré Sty\ec\) O
F.\/L—’f/\ iqn N
» 127 < (signed char) 128u TINES Comprison
Ob Ol L (LI Ob (o> 09GO
ObLO UL (LY Gblodo oD
signed
comBr(Sbﬂi 17_17' < "'12.8
l Fa(sé‘
uAsigneo\ ll -_7_ < | 8 es, iy LHS LGS (z}u)

Com‘mm's on

T(‘ wWC
13

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Integers

+» Binary representation of integers
" Unsigned and signed
" Castingin C

+» Consequences of finite width representations

= Sign extension, overflow

+ Shifting and arithmetic operations

14

YA UNIVERSITY of WASHINGTON

LO5: Integers Il

CSES351, Autumn 2021

Sign Extension (Review)

+» Task: Given a w-bit signed integer X, convert it to
w+k-bit signed integer X' with the same value

+» Rule: Add k copies of sign bit
= Let x; be the i-th digit of X in binary

A
- X -_ xw_l’ ---,xw_l,‘xw_l, xw_z) ---,xl) xO’
I

k copies of MSB original X
<€ w >
X' o0 0 oo o0
<€ k >€ w >

15

YA UNIVERSITY of WASHINGTON

LO5: Integers Il

CSES351, Autumn 2021

Two’s Complement Arithmetic

«» The same addition procedure works for both
unsigned and two’s complement integers

= Simplifies hardware: only one algorithm for addition

= Algorithm: simple addition, discard the highest carry bit
- Called modular addition: result is sum modulo 2%

16

YA UNIVERSITY of WASHINGTON

LO5: Integers Il CSE351, Autumn 2021

Arithmetic Overflow (Review)

Bits [Unsigned| Signed
0000 O (ARin 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7 TMa&x
1000 8 -8 TMliwy
1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 | 15UMey -1

+ When a calculation produces a result
that can’t be represented in the
current encoding scheme
. : : ta = UWMax
" Integer range limited by fixed width T,

= Can occur in both the positive and negative
directions

/

» Cand Java ignore overflow exceptions

L)

®= You end up with a bad value in your
program and no warning/indication... oops!

17

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Overflow: Unsigned

« Addition: drop carry bit (—2N) Wha | Ut
15 1111 <—4——>0§?
+ 2 + 0010 14 " 1111 | 0000 1
T 20001 13/ 1110 1 0001 \ 2

1101
1100

0010

1 12 0011

+» Subtraction: bor}g/c%wzHZN) .1\ 1011 Unsigned 0100 | ,
1 70001 1010 0101
_ 5 0010 10\ 1001 0110 5
1000 0111

+2N because of | .4
modular arithmetic

18

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Overflow: Two’s Complement

+ Addition: (+) + (+) = (=) result?

o¥
6 0110 _1 — 0
+ 3 + 0011 1111 0000
7 1001 _3 / 1110 0001 \ 42
1101 0010
-/ -4 1100 Two’s 0011 * 3
» Subtraction: (=) + (=) = (+)? (\1011 Complement 50 |
_ +
—7 1001 1010
4 0011 -6 _ 1001 +5
— ; X
’1/2’ OllO \—8 : _:7//7

For signed: overflow if operands have
same sign and result’s sign is different

19

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Practice Questions 2

_ o G NinT = [~
+» Assuming 8-bit integers: mﬁ'(f‘,;ﬁﬂg%?i%

= Ox27 =39 (signed) = 39 (unsigned)

= OxD9 =-39 (signed) = 217 (unsigned)

= OXTF =127 (signed) = 127 (unsigned)
= Ox81 =-127 (signed) = 129 (unsigned)

+ For the following additions, did signed and/or
unsigned overflow occur?

" Ox27 + 0Ox81

siﬁne&: IR 4+ (-127) = -3% un signed: 31 + 124 = 163
no 5‘3”1"l ov(r‘f"w no u.r\53oeA bve(’Flv

= OxX7F + 0OxD9 ¥
Simed : 24 + Q'S'\) UASigNe€ neN: |13 4 20F = 4

no S\sneb o\/er‘P,M Un.ngv\e(‘ e\lef"ﬂb“\)

20

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Integers

+» Binary representation of integers
" Unsigned and signed
" Castingin C

+» Consequences of finite width representations

= Sign extension, overflow

+» Shifting and arithmetic operations

21

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Shift Operations (Review)

+» Throw away (drop) extra bits that “fall off” the end

+ Left shift (x<<n) bit vector x by n positions
= Fill with 0’s on right
+» Right shift (x>>n) bit-vector x by n positions

= |ogical shift (for unsigned values)
- Fill with 0’s on left

= Arithmetic shift (for signed values)
- Replicate most significant bit on left (maintains sign of x)

8-bif eample: | x [0010 0010 X |1010 0010
X<<3 10001 0000 X<<3 10001 0000

logical: | x>>2 [Q000 1000 logical: | Xx>>2 [0010 1000
arithmetic: | x>>2 | 0000 1000 arithmetic: [x>>2 [1110 1000

22

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Shift Operations (Review) .
Ai fl" &XZ C Ranges [oer aC 2 Ly N

+ Arithmetic: kf‘“‘*‘f—’ it maosed pos hions
= Left shift (x<<n) is equivalent to multiply by 2"
= Right shift (x>>n) is equivalent to divide by 2"

= Shifting is faster than general multiply and divide
operations! ((ompilcr ull try To optimize for you

<+ Notes: behovior net
Juarantec)

= Shifts by n<0 or n=>w (w is bit width of x) are undefined
" In C: behavior of >> is determined by the complier

arithmet ic o eal

- Ingcc/ Clang, depends on data type of x (S|gned/un5|gned)
" InJava: logical shiftis >>> and arithmetic shift is >>

23

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Left Shifting Arithmetic 8-bit Example

+» No difference in left shift operation for unsigned and
signed numbers (just manipulates bits)
= Difference comes during interpretation: x*2°?
Signed Unsigned

I gy B
L1=x<<2: 5201100100 = 100 100
200/72‘3
~256(
[2=x<<3; (5011001000 = _<56 200
| signed ov@ AR T
L3=x<<4; 08410010000 = =112 144

| unsigned O\m

24

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Right Shifting Arithmetic 8-bit Examples

<+ Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
" |ogical Shift: x/2°7?

xu = 240u; 11110000 = 249%:N>
NN

Rlu=xu>>3; 0001111090 - SQQ:?S

R2u=xu>>5,; 00000111150 =]

| rounding (doﬁ

25

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Right Shifting Arithmetic 8-bit Examples

<+ Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
= Arithmetic Shift: x/2°7?

xs = —-16; 11110000 = =160

NN

Rls=xu>>3; 11111110069

_Z/Lf-os
R2s=xu>>5; 111111117080 = -1

| rounding (doﬁ

26

CSES351, Autumn 2021

YA UNIVERSITY of WASHINGTON

LO5: Integers Il

Exploration Questions

UMz O, WMax =255

Q- bi¥s, se TMin=-Ig, TMax = |27

For the following expressions, find a value of signed char x,

if there exists one, that makes the expression True.

%~ Assume we are using 8-bit arithmetic:

ungigned | Example: Al soldiong:
"% (unsigned char) x %= 0 % onrks For a\l x
- é X=-| any x<O
2 22 4280000 !
T — ,5 oYy X m io%)\—
" = (x>>2)<<2 X= }us bits ave nat Oo00
= ..0=0

« Hint: there are two solutions

@ x=0blo..-0=-128

e —

—

(x < 1280)

& &

(x > 0x3F)

|

ovx\/ X \J\ere Wpper
+o bk ore tXOCHy O\OD\

27

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Summary

+ Sign and unsigned variables in C
" Bit pattern remains the same, just interpreted differently

= Strange things can happen with our arithmetic when we
convert/cast between sign and unsigned numbers

- Type of variables affects behavior of operators (shifting, comparison)

+» We can only represent so many numbers in w bits
= When we exceed the limits, arithmetic overflow occurs
= Sign extension tries to preserve value when expanding

+ Shifting is a useful bitwise operator
= Right shifting can be arithmetic (sign) or logical (0)
= Can be used in multiplication with constant or bit masking

28

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

BONUS SLIDES

Some examples of using shift operators in combination
with bitmasks, which you may find helpful for Lab 1b.

+ Extract the 2"9 most significant byte of an int
+ Extract the sign bit of a sighed int
+ Conditionals as Boolean expressions

29

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Using Shifts and Masks

+ Extract the 2" most significant byte of an int:
" First shift, then mask: (x>>16) & OxFF

L)

X 00000001|00000010,00000011 00000100
x>>16 00000000 00000000 OOOOOOOl|OOOOOOlO
OxFF 00000000 00000000 00000000 11111111

(x>>16) & OxFF 00000000 00000000 00000000 00000010

= Or first mask, then shift: (x & OxFF0000)>>16

X 00000001 00000010 00000011 00000100
0xFF0000 |00000000 11111111 00000000 00000000

x & OXFF0000 [00000000[00000010[00000000 00000000
(x&0xFF0000)>>16 00000000 00000000 00000000]00000010

30

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Using Shifts and Masks

+» Extract the sign bit of a signed int:
" First shift, then mask: (x>>31) & 0x1

- Assuming arithmetic shift here, but this works in either case
- Need mask to clear 1s possibly shifted in

X OD000001 00000010 00000011 00000100
x>>31 00000000 00000000 00000000 00000070
0x1 00000000 00000000 00000000 00000001

(x>>31) & Ox1 |00000000 00000000 00000000 00000000

p 4 10000001 00000010 00000011 00000100
x>>31 11111111 11111111 11111111 11111111
Ox1 00000000 00000000 00000000 00000001

(x>>31) & Ox1 |00000000 00000000 00000000 00000001

31

YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Using Shifts and Masks

+» Conditionals as Boolean expressions
" Forint x,whatdoes (x<<31)>>31 do?

x=11123 00000000 00000000 00000000 00000001
x<<31 10000000 00000000 00000000 00000000
(x<<31)>>31 11111111 1111171171 1111131171 11111111
Ix 00000000 00000000 00000000 00000000
1%<<31 00000000 00000000 00000000 00000000
('x<<31)>>31 |[00000000 00000000 0OOOOOOO0O 00000000

" Can use in place of conditional:
- InC: 1f(x) {a=y;} else {a=z;} equivalenttoa=x?y:z;
«a=(((!!x<<31)>>31)&y) | (((!x<<31)>>31)&z);

32

