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Relevant Course Information

+» hw4 due 10/11, hw5 due 10/13
+» Lab 1a due Monday (10/11)

= Use ptestanddlc.py to check your solution for
correctness (on the CSE Linux environment)

= Submit pointer.c and lablAsynthesis.txtto
Gradescope

- Make sure you pass the File and Compilation Check — all the correct
files were found and there were no compilation or runtime errors

+» Lab 1b released today, due 10/18

= Bit manipulation on a custom encoding scheme

"= Bonus slides at the end of today’s lecture have relevant
examples
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Runnable Code Snippets on Ed

+» Ed allows you to embed runnable code snippets (e.g.,
readings, homework, discussion)

= These are editable and rerunnable!

" Hide compiler warnings, but will show compiler errors and
runtime errors

+» Suggested use

" Good for experimental questions about basic behaviors in C

= NOT entirely consistent with the CSE Linux environment, so
should not be used for any lab-related work
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Reading Review

+» Terminology:
= UM1in, UMax, TM1n, TMax
" Type casting: implicit vs. explicit
" |nteger extension: zero extension vs. sigh extension
" Modular arithmetic and arithmetic overflow
= Bit shifting: left shift, logical right shift, arithmetic right shift

% Questions from the Reading?
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Review Questions sk

ceprowt Z =& nambers \[‘M)f" heﬁif' e

+» What is th/e/OaIue (and encoding) of TM1 n for a
fICtlogf| ’6 bgc vgld% integer data type? -2 =2 ‘j’S_ZJ

+~ Forunsigned char uc = @xAl,,what are the

produced data for the cast (unsigned shgﬁ:)uc?

unsigned —> W / O%ODA'\

+» What is the result of the following expressions?
" (signed char)uc >> 2

" (unsigned char)uc >+> 3
sgver: Ob 10 (0 OO T E55 01110 1000 = [Ongk

unssned : Ob (OO0 OLOT e, Ob0O0| O\00 ‘—‘-rox 1"&,
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Why Does Two’s Complement Work?

+ For all representable positive integers x, we want:

1. bit representation of x
addtive trep . f
- + bit representation of —x
|nVersSe

0 (ignoring the carry-out bit)

" What are the 8-bit negative encodings for the follc‘)wing?
VL

D 24007 O 1) 80 - IR 118411}
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Why Does Two’s Complement Work?

+ For all representable positive integers x, we want: s,

bit representation of x X+ C’\' X> N
+ bit representation of —x X 4+ () = -
0 (ignoring the carry-out bit)

®= What are the 8-bit negative encodings for the following?

00000001 00000010 11000011
+ 11111111 + 11111110 + 00111101
00000000 00000000 200000000

These are the bitwise complement plus 1!
-x == ~x + 1
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Integers

+~ Binary representation of integers
= Unsigned and signed
= CastinginC
+» Consequences of finite width representations

= Sign extension, overflow

+ Shifting and arithmetic operations
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Signed/Unsigned Conversion Visualized

+» Two’s Complement — Unsigned _
P 5 pMaxx =0W1...1=72%-1
= Ordering Inversion UMax — 1

" Negative — Big Positive

0k10...0F 2"
TMax +1 .
) B / _ Unsigned
771 = 0bo/..| \TME ® *®  TMax Range
=00...0

2's Complement 0

® *® 0/UMin
Range 1 .J/
-2

1" =0L10...0 4 TMin|

‘_.
|
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Values To Remember (Review)

+» Unsigned Values +» Two’s Complement Values
= UMin = 0b00..0 = TMin = 0b10..0
= 0 — _2W—1
= UMax = O0bll..l = TMax = 0b01..1
= 2V 1 - 2W—1_1
= —1 = 0bll..1

+» Example: Values forw = 64

UMax 18,446,744,073,709,551,615 L N 2 - =
TMax 9,223,372,036,854,775,807 TE OEE OEE FE O OEE FE FE OFE

TMin  -9,223,372,036,854,775,808 80 00 00 00 00 00 00 0O
-1 -1 FEOEE FRORE FE OEE FE R

0 0 00 00 00 00 00 00 00 0O

10
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In C: Signed vs. Unsigned (Review)

+» Casting
" Bits are unchanged, just interpreted differently!
- int tx, ty;
- unsigned int ux, uy;
= Explicit casting \
+ tx = (int) ux; (newtype ) expression

 uy = (unsigned int) ty;

" Implicit casting can occur during assignments or function
calls cast o ‘\'Z\r@v:l' vari able/ [mroanei‘er 'f-y/)e

o IX = ux;
e uy =ty; Cﬂ\so 7'“("75\“‘/ o@ars with Prird‘( ﬁvm-d Sred—C‘\efS)

11
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Casting Surprises (Review) 111

+ Integer literals (constants)

= By default, integer constants are considered signed integers

- Hex constants already have an explicit binary representation

= Use “U” (or “u”) suffix to explicitly force unsigned
- Examples: 0U, 42949567259u

+ Expression Evaluation

®" When you mixed unsigned and signed in a single expression,
then signed values are implicitly cast to unsigned [/ wnsigned

: M ‘\Abhﬂ'\nO\ "
" Including comparison operators <, >, ==, <=, >= fes

12
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Practice Question 1

+» Assuming 8-bit data (i.e., bit position 7 is the MSB),
what will the following expression evaluate to?
" UMin =0, UMax = 255, TMin =-128, TMax =127

signea\ s:’gheo\ G bt side ;ré Sty\ec\) O
F.\/L—’f/\ iqn N
» 127 < (signed char) 128u TINES Comprison
Ob Ol L (LI Ob (o> 09GO
ObLO UL (LY Gblodo oD
signed
comBr(Sbﬂi 17_17' < "'12.8
l Fa(sé‘
uAsigneo\ ll -_7_ < | 8 es, iy LHS LGS (z}u)

Com‘mm's on

T(‘ wWC
13
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Integers

+» Binary representation of integers
" Unsigned and signed
" Castingin C

+» Consequences of finite width representations

= Sign extension, overflow

+ Shifting and arithmetic operations

14
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Sign Extension (Review)

+» Task: Given a w-bit signed integer X, convert it to
w+k-bit signed integer X' with the same value

+» Rule: Add k copies of sign bit
= Let x; be the i-th digit of X in binary

A
- X -_ xw_l’ ---,xw_l,‘xw_l, xw_z) ---,xl) xO’
I

k copies of MSB original X
<€ w >
X' o0 0 oo o0
<€ k >€ w >

15
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Two’s Complement Arithmetic

«» The same addition procedure works for both
unsigned and two’s complement integers

= Simplifies hardware: only one algorithm for addition

= Algorithm: simple addition, discard the highest carry bit
- Called modular addition: result is sum modulo 2%

16
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Arithmetic Overflow (Review)

Bits [Unsigned| Signed
0000 O (ARin 0

0001 1 1

0010 2 2

0011 3 3

0100 4 4

0101 5 5

0110 6 6

0111 7 7 TMa&x
1000 8 -8 TMliwy
1001 9 -7

1010 10 -6

1011 11 -5

1100 12 -4

1101 13 -3

1110 14 -2

1111 | 15UMey -1

+ When a calculation produces a result
that can’t be represented in the
current encoding scheme
. : : ta = UWMax
" Integer range limited by fixed width T,

= Can occur in both the positive and negative
directions

/

» Cand Java ignore overflow exceptions

L)

®= You end up with a bad value in your
program and no warning/indication... oops!

17
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Overflow: Unsigned

« Addition: drop carry bit (—2N) Wha | Ut
15 1111 <—4——>0§?
+ 2 + 0010 14 " 1111 | 0000 1
T 20001 13/ 1110 1 0001 \ 2

1101
1100

0010

1 12 0011

+» Subtraction: bor}g/c%wzHZN) .1\ 1011 Unsigned 0100 | ,
1 70001 1010 0101
_ 5 0010 10\ 1001 0110 5
1000 0111

+2N because of | .4
modular arithmetic

18
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Overflow: Two’s Complement

+ Addition: (+) + (+) = (=) result?

o¥
6 0110 _1 — 0
+ 3 + 0011 1111 0000
7 1001 _3 / 1110 0001 \ 42
1101 0010
-/ -4 1100 Two’s 0011 * 3
» Subtraction: (=) + (=) = (+)? (\1011  Complement 50 |
_ +
—7 1001 1010
4 0011 -6 \_ 1001 +5
— ; X
’1/2’ OllO \—8 : _:7//7

For signed: overflow if operands have
same sign and result’s sign is different

19
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Practice Questions 2

_ o G NinT = [~
+» Assuming 8-bit integers: mﬁ'(f‘,;ﬁﬂg%?i%

= Ox27 =39 (signed) = 39 (unsigned)

= OxD9 =-39 (signed) = 217 (unsigned)

= OXTF =127 (signed) = 127 (unsigned)
= Ox81 =-127 (signed) = 129 (unsigned)

+ For the following additions, did signed and/or
unsigned overflow occur?

" Ox27 + 0Ox81

siﬁne&: IR 4+ (-127) = -3% un signed: 31 + 124 = 163
no 5‘3”1"l ov(r‘f"w no u.r\53oeA bve(’Flv

= OxX7F + 0OxD9 ¥
Simed : 24 + Q'S'\) UASigNe€ neN: |13 4 20F = 4

no S\sneb o\/er‘P,M Un.ngv\e(‘ e\lef"ﬂb“\)

20
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Integers

+» Binary representation of integers
" Unsigned and signed
" Castingin C

+» Consequences of finite width representations

= Sign extension, overflow

+» Shifting and arithmetic operations

21
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Shift Operations (Review)

+» Throw away (drop) extra bits that “fall off” the end

+ Left shift (x<<n) bit vector x by n positions
= Fill with 0’s on right
+» Right shift (x>>n) bit-vector x by n positions

= |ogical shift (for unsigned values)
- Fill with 0’s on left

= Arithmetic shift (for signed values)
- Replicate most significant bit on left (maintains sign of x)

8-bif eample: | x [0010 0010 X |1010 0010
X<<3 10001 0000 X<<3 10001 0000

logical: | x>>2 [ Q000 1000 logical: | Xx>>2 [ 0010 1000
arithmetic: | x>>2 | 0000 1000 arithmetic: [ x>>2 [ 1110 1000

22
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Shift Operations (Review) .
Ai fl" &XZ C Ranges [oer aC 2 Ly N

+ Arithmetic: kf‘“‘*‘f—’ it maosed pos hions
= Left shift (x<<n) is equivalent to multiply by 2"
= Right shift (x>>n) is equivalent to divide by 2"

= Shifting is faster than general multiply and divide
operations! ((ompilcr ull try To optimize for you

<+ Notes: behovior net
Juarantec)

= Shifts by n<0 or n=>w (w is bit width of x) are undefined
" In C: behavior of >> is determined by the complier

arithmet ic o eal

- Ingcc/ Clang, depends on data type of x (S|gned/un5|gned)
" InJava: logical shiftis >>> and arithmetic shift is >>

23
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Left Shifting Arithmetic 8-bit Example

+» No difference in left shift operation for unsigned and
signed numbers (just manipulates bits)
= Difference comes during interpretation: x*2°?
Signed Unsigned

I gy B
L1=x<<2: 5201100100 = 100 100
200/72‘3
~256(
[2=x<<3; (5011001000 = _<56 200
| signed ov@ AR T
L3=x<<4; 08410010000 = =112 144

| unsigned O\m

24
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Right Shifting Arithmetic 8-bit Examples

<+ Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
" |ogical Shift: x/2°7?

xu = 240u; 11110000 = 249%:N>
NN

Rlu=xu>>3; 0001111090 - SQQ:?S

R2u=xu>>5,; 00000111150 = ]

| rounding (doﬁ

25
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Right Shifting Arithmetic 8-bit Examples

<+ Reminder: C operator >> does logical shift on
unsigned values and arithmetic shift on signed values
= Arithmetic Shift: x/2°7?

xs = —-16; 11110000 = =160

NN

Rls=xu>>3; 11111110069

_Z/Lf-os
R2s=xu>>5; 111111117080 = -1

| rounding (doﬁ

26
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UMz O, WMax =255

Q- bi¥s, se TMin=-Ig, TMax = |27

For the following expressions, find a value of signed char x,

if there exists one, that makes the expression True.

%~ Assume we are using 8-bit arithmetic:

ungigned | Example: Al soldiong:
"% (unsigned char) x %= 0 % onrks For a\l x
- é X=-| any x<O
2 22 4280000 !
T — ,5 oYy X m io%)\—
" = (x>>2)<<2 X= }us bits ave nat Oo00
= ..0=0

« Hint: there are two solutions

@ x=0blo..-0=-128

e —

—

(x < 1280)

& &

(x > 0x3F)

|

ovx\/ X \J\ere Wpper
+o bk ore tXOCHy O\OD\

27
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Summary

+ Sign and unsigned variables in C
" Bit pattern remains the same, just interpreted differently

= Strange things can happen with our arithmetic when we
convert/cast between sign and unsigned numbers

- Type of variables affects behavior of operators (shifting, comparison)

+» We can only represent so many numbers in w bits
= When we exceed the limits, arithmetic overflow occurs
= Sign extension tries to preserve value when expanding

+ Shifting is a useful bitwise operator
= Right shifting can be arithmetic (sign) or logical (0)
= Can be used in multiplication with constant or bit masking

28
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BONUS SLIDES

Some examples of using shift operators in combination
with bitmasks, which you may find helpful for Lab 1b.

+ Extract the 2"9 most significant byte of an int
+ Extract the sign bit of a sighed int
+ Conditionals as Boolean expressions

29



YA UNIVERSITY of WASHINGTON LO5: Integers II CSES351, Autumn 2021

Using Shifts and Masks

+ Extract the 2" most significant byte of an int:
" First shift, then mask: (x>>16) & OxFF

L)

X 00000001|00000010,00000011 00000100
x>>16 00000000 00000000 OOOOOOOl|OOOOOOlO
OxFF 00000000 00000000 00000000 11111111

(x>>16) & OxFF 00000000 00000000 00000000 00000010

= Or first mask, then shift: (x & OxFF0000)>>16

X 00000001 00000010 00000011 00000100
0xFF0000  |00000000 11111111 00000000 00000000

x & OXFF0000 [00000000[00000010[00000000 00000000
(x&0xFF0000)>>16 00000000 00000000 00000000]00000010

30
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Using Shifts and Masks

+» Extract the sign bit of a signed int:
" First shift, then mask: (x>>31) & 0x1

- Assuming arithmetic shift here, but this works in either case
- Need mask to clear 1s possibly shifted in

X OD000001 00000010 00000011 00000100
x>>31 00000000 00000000 00000000 00000070
0x1 00000000 00000000 00000000 00000001

(x>>31) & Ox1 |00000000 00000000 00000000 00000000

p 4 10000001 00000010 00000011 00000100
x>>31 11111111 11111111 11111111 11111111
Ox1 00000000 00000000 00000000 00000001

(x>>31) & Ox1 |00000000 00000000 00000000 00000001

31
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Using Shifts and Masks

+» Conditionals as Boolean expressions
" Forint x,whatdoes (x<<31)>>31 do?

x=11123 00000000 00000000 00000000 00000001
x<<31 10000000 00000000 00000000 00000000
(x<<31)>>31 11111111 1111171171 1111131171 11111111
Ix 00000000 00000000 00000000 00000000
1%<<31 00000000 00000000 00000000 00000000
('x<<31)>>31 |[00000000 00000000 0OOOOOOO0O 00000000

" Can use in place of conditional:
- InC: 1f(x) {a=y;} else {a=z;} equivalenttoa=x?y:z;
«a=(((!!x<<31)>>31)&y) | (((!x<<31)>>31)&z);

32



