Data III & Integers I

CSE 351 Autumn 2021

Instructor:

Justin Hsia

Teaching Assistants:

Allie Pfleger Anirudh Kumar Assaf Vayner Atharva Deodhar Celeste Zeng Dominick Ta Francesca Wang Hamsa Shankar Isabella Nguyen Joy Dang Julia Wang Maggie Jiang Monty Nitschke **Morel Fotsing** Sanjana Chintalapati

http://xkcd.com/257/

Relevant Course Information

- hw3 due Friday, hw4 due Monday
- Lab 1a released
 - Workflow:
 - 1) Edit pointer.c
 - 2) Run the Makefile (make clean followed by make) and check for compiler errors & warnings
 - 3) Run ptest (./ptest) and check for correct behavior
 - 4) Run rule/syntax checker (python3 dlc.py) and check output
 - Due Monday 10/11, will overlap a bit with Lab 1b
 - We grade just your last submission
 - Don't wait until the last minute to submit need to check autograder output

Lab Synthesis Questions

- All subsequent labs (after Lab 0) have a "synthesis question" portion
 - Can be found on the lab specs and are intended to be done after you finish the lab
 - You will type up your responses in a .txt file for submission on Gradescope
 - These will be graded "by hand" (read by TAs)
- Intended to check your understand of what you should have learned from the lab
 - Also great practice for short answer questions on the exams

Reading Review

- Terminology:
 - Bitwise operators (&, |, ^, ~)
 - Logical operators (&&, | |, !)
 - Short-circuit evaluation
 - Unsigned integers
 - Signed integers (Two's Complement)
- Questions from the Reading?

Review Questions

- Compute the result of the following expressions for char c = 0x81;
 - C ^ C
 - ~c & 0xA9
 - **c** | 0x80
 - !!c
- Compute the value of signed char sc = 0xF0; (Two's Complement)

Bitmasks

- Typically binary bitwise operators (&, |, ^) are used with one operand being the "input" and other operand being a specially-chosen bitmask (or mask) that performs a desired operation
- * Operations for a bit b (answer with 0, 1, b, or \overline{b}):

$$b \& 0 =$$

$$b \& 1 =$$

$$b \mid 0 =$$

$$b \mid 1 =$$

$$b \land 0 =$$

Bitmasks

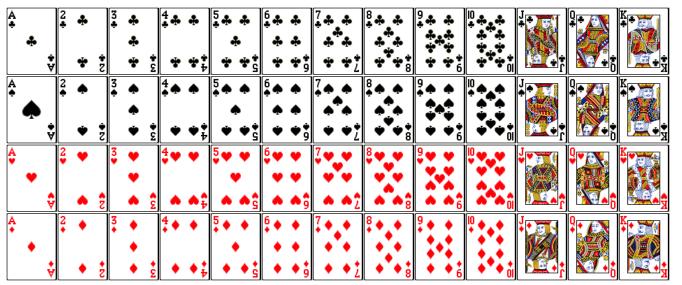
Typically binary bitwise operators (&, |, ^) are used with one operand being the "input" and other operand being a specially-chosen bitmask (or mask) that performs a desired operation

* Example: b|0 = b, b|1 = 1

$$01010101 \leftarrow input$$
 $11110000 \leftarrow bitmask$
 11110101

Numerical Encoding Design Example

- Encode a standard deck of playing cards
 - 52 cards in 4 suits
- Operations to implement:
 - Which is the higher value card?
 - Are they the same suit?



Representations and Fields

1) 1 bit per card (52): bit corresponding to card set to 1

52 cards

- "One-hot" encoding (similar to set notation)
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required
- 2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

- Pair of one-hot encoded values
- Easier to compare suits and values, but still lots of bits used

Representations and Fields

3) Binary encoding of all 52 cards – only 6 bits needed

$$^{\bullet}$$
 $2^6 = 64 \ge 52$

low-order 6 bits of a byte

- Fits in one byte (smaller than one-hot encodings)
- How can we make value and suit comparisons easier?
- 4) Separate binary encodings of suit (2 bits) and value (4 bits)

suit value

Also fits in one byte, and easy to do comparisons

K	Q	J	 3	2	Α
1101	1100	1011	 0011	0010	0001

♣	00
•	01
*	10
•	11

Compare Card Suits

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector *v*.

Here we turn all but the bits of interest in v to 0.

```
char hand[5];  // represents a 5-card hand
 char card1, card2; // two cards to compare
 card1 = hand[0];
 card2 = hand[1];
 if ( sameSuitP(card1, /card2) ) { ... }
#define SUIT MASK
                   0x30
int sameSuitP(char card1, char card2) {
  return (!((card1 & SUIT MASK) ^ (card2 & SUIT MASK)));
    return (card1 & SUIT MASK) == (card2 & SUIT MASK);
 returns int SUIT_MASK = 0x30 = [0]0
                                                equivalent
                                        value
                                  suit
                                                          11
```

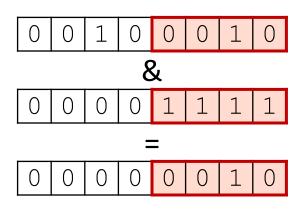
Compare Card Suits

```
#define SUIT MASK 0x30
int sameSuitP(char card1, char card2) {
  return (!((card1 & SUIT MASK) ^ (card2 & SUIT MASK)));
  //return (card1 & SUIT MASK) == (card2 & SUIT MASK);
                         SUIT MASK
                   0
                   0
                             Λ
! (x^y) equivalent to x==y
```

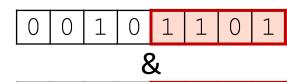
Compare Card Values

Compare Card Values

L04: Data III & Integers I



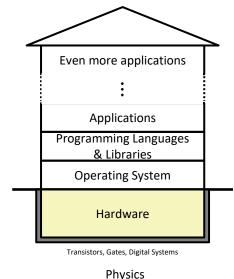
VALUE MASK



$$2_{10} > 13_{10}$$
0 (false)

The Hardware/Software Interface

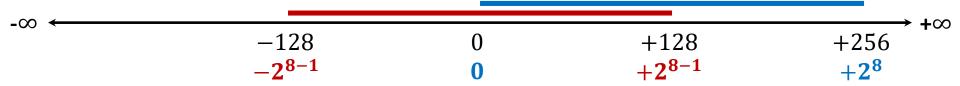
- Topic Group 1: Data
 - Memory, Data, Integers, Floating Point, Arrays, Structs



- **Physics**
- How do we store information for other parts of the house of computing to access?
 - How do we represent data and what limitations exist?
 - What design decisions and priorities went into these encodings?

Encoding Integers

- The hardware (and C) supports two flavors of integers
 - unsigned only the non-negatives
 - signed both negatives and non-negatives
- Cannot represent all integers with w bits
 - Only 2^w distinct bit patterns
 - Unsigned values: $0 \dots 2^w 1$
 - Signed values: $-2^{w-1} \dots 2^{w-1} 1$
- Example: 8-bit integers (e.g., char)



Unsigned Integers (Review)

- Unsigned values follow the standard base 2 system
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + \dots + b_12^1 + b_02^0$
- * Useful formula: $2^{N-1} + 2^{N-2} + ... + 2 + 1 = 2^N 1$
 - *i.e.*, N ones in a row = $2^N 1$
 - *e.g.*, 0b111111 = 63

Not used in practice for integers!

- Designate the high-order bit (MSB) as the "sign bit"
 - sign=0: positive numbers; sign=1: negative numbers

Benefits:

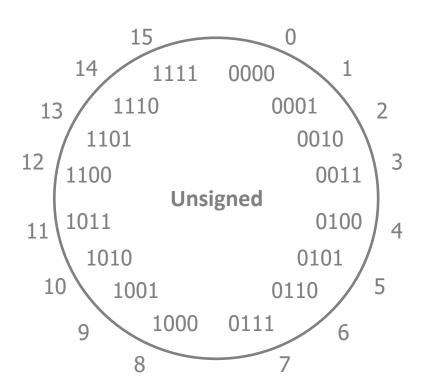
- Using MSB as sign bit matches positive numbers with unsigned
- All zeros encoding is still = 0

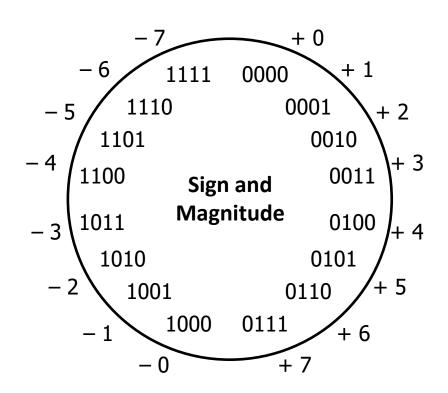
Examples (8 bits):

- $0x00 = 00000000_2$ is non-negative, because the sign bit is 0
- $0x7F = 011111111_2$ is non-negative (+127₁₀)
- $0x85 = 10000101_2$ is negative (-5₁₀)
- $0x80 = 10000000_2$ is negative... zero???

Not used in practice for integers!

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks?

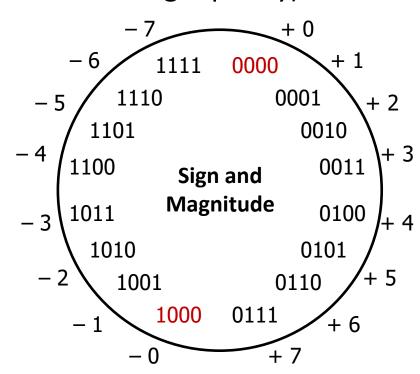




Not used in practice for integers!

CSE351, Autumn 2021

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)

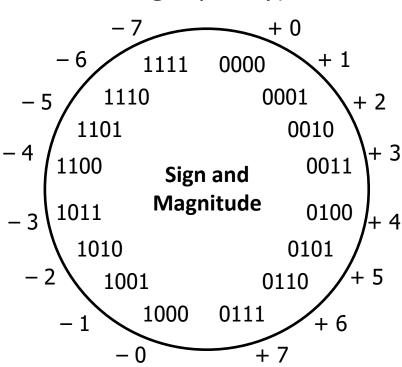


Not used in practice for integers!

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
 - Arithmetic is cumbersome
 - Example: 4-3 != 4+(-3)

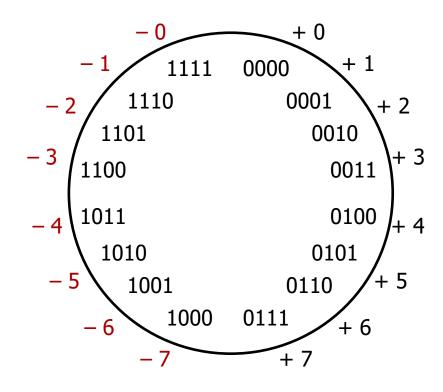
	Y
- 7	1111
+ - 3	+ 1011
4	0100

Negatives "increment" in wrong direction!



Two's Complement

- Let's fix these problems:
 - 1) "Flip" negative encodings so incrementing works



CSE351, Autumn 2021

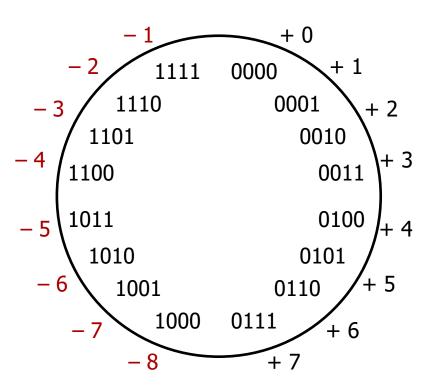
Two's Complement

- Let's fix these problems:
 - 1) "Flip" negative encodings so incrementing works

L04: Data III & Integers I

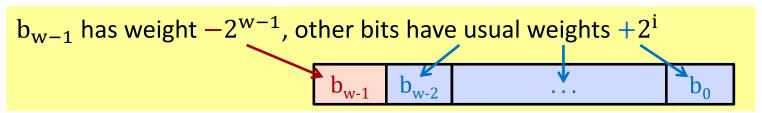
2) "Shift" negative numbers to eliminate –0

- MSB still indicates sign!
 - This is why we represent one more negative than positive number (-2^{N-1}) to 2^{N-1}



Two's Complement Negatives (Review)

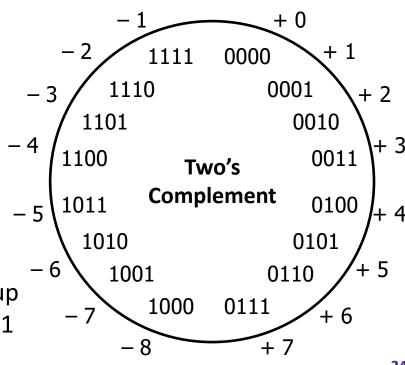
Accomplished with one neat mathematical trick!



- 4-bit Examples:
 - 1010_2 unsigned: $1*2^3+0*2^2+1*2^1+0*2^0 = 10$
 - 1010_2 two's complement: $-1*2^3+0*2^2+1*2^1+0*2^0 = -6$
- -1 represented as:

$$1111_2 = -2^3 + (2^3 - 1)$$

 MSB makes it super negative, add up all the other bits to get back up to -1



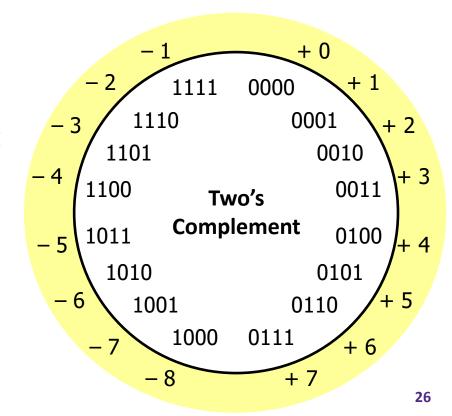
Polling Question

- * Take the 4-bit number encoding x = 0b1011
- Which of the following numbers is NOT a valid interpretation of x using any of the number representation schemes discussed today?
 - Unsigned, Sign and Magnitude, Two's Complement
 - Vote in Ed Lessons
 - A. -4
 - B. -5
 - C. 11
 - D. -3
 - E. We're lost...

Two's Complement is Great (Review)

- Roughly same number of (+) and (-) numbers
- Positive number encodings match unsigned
- Single zero
- All zeros encoding = 0

- Simple negation procedure:
 - Get negative representation of any integer by taking bitwise complement and then adding one!
 (~x + 1 == -x)



Integer Representation Design Decisions

- Some explicitly mentioned and some implicit:
 - Represent consecutive integers
 - What would happen if we had gaps?

- Represent the same number of positives and negatives
 - Could we choose a different shift/bias?

- Positive number encodings match unsigned
 - What's the advantage here?

Summary

- Bit-level operators allow for fine-grained manipulations of data
 - Bitwise AND (&), OR (|), and NOT (~) different than logical AND (&&), OR (||), and NOT (!)
 - Especially useful with bit masks
- Choice of encoding scheme is important
 - Tradeoffs based on size requirements and desired operations
- Integers represented using unsigned and two's complement representations
 - Limited by fixed bit width
 - We'll examine arithmetic operations next lecture