Memory, Data, & Addressing II

CSE 351 Autumn 2021

Instructor:

Justin Hsia

Teaching Assistants:

Allie Pfleger Anirudh Kumar Assaf Vayner Atharva Deodhar Celeste Zeng **Dominick Ta** Francesca Wang Hamsa Shankar Isabella Nguyen Joy Dang Julia Wang Maggie Jiang Monty Nitschke **Morel Fotsing** Sanjana Chintalapati

http://xkcd.com/138/

Relevant Course Information

- Lab 0 due today @ 11:59 pm
 - You will revisit this concepts from program!
- hw2 due Wednesday, hw3 due Friday
 - Autograded, unlimited tries, no late submissions
- Lab 1a released today, due next Monday (10/11)
 - Pointers in C
 - Last submission graded, can optionally work with a partner
 - One student submits, then add their partner to the submission
 - Short answer "synthesis questions" for after the lab

Late Days

- You are given 5 late day tokens for the whole quarter
 - Tokens can only apply to Labs
 - No benefit to having leftover tokens
- Count lateness in *days* (even if just by a second)
 - Special: weekends count as one day
 - No submissions accepted more than two days late
- Late penalty is 20% deduction of your score per day
 - Only late labs are eligible for penalties
 - Penalties applied at end of quarter to maximize your grade
- Use at own risk don't want to fall too far behind
 - Intended to allow for unexpected circumstances

Reading Review

- Terminology:
 - address-of operator (&), dereference operator (*), NULL
 - box-and-arrow memory diagrams
 - pointer arithmetic, arrays
 - C string, null character, string literal
- Questions from the Reading?

Review Questions

- How much space does the variable p take up?
 - A. 1 byte
 - B. 2 bytes
 - C. 4 bytes
 - D. 8 bytes

- Which of the following expressions evaluate to an address?
 - A.x + 10
 - B.p + 10
 - C.&x + 10
 - D. *(&p)
 - **E.**ar[1]
 - F.&ar[2]

Pointer Operators

- * & = "address of" operator
- * * = "value at address" or "dereference" operator
- Operator confusion
 - The pointer operators are unary (i.e., take 1 operand)
 - These operators both have *binary* forms
 - x & y is bitwise AND (we'll talk about this next lecture)
 - x * y is multiplication
 - * is also used as part of the data type in pointer variable declarations – this is NOT an operator in this context!

32-bit example (pointers are 32-bits wide)

little-endian

- A variable is represented by a location
- ◆ Declaration ≠ initialization (initially "mystery data")
- * int x, y;
 - x is at address 0x04, y is at 0x18

	0x00	0x01	0x02	0x03	_
0x00	A7	00	32	00	
0x04	00	01	29	F3	Χ
0x08	EE	EE	EE	EE	
Ox0C	FA	CE	CA	FE	
0x10	26	00	00	00	
0x14	00	00	10	00	
0x18	01	00	00	00	У
Ox1C	FF	00	F4	96	
0x20	DE	AD	BE	EF	
0x24	00	00	00	00	

32-bit example (pointers are 32-bits wide)

little-endian

- A variable is represented by a location
- ◆ Declaration ≠ initialization (initially "mystery data")
- * int x, y;
 - x is at address 0x04, y is at 0x18

32-bit example (pointers are 32-bits wide)

- Ieft-hand side = right-hand side;
 - LHS must evaluate to a *location*
 - RHS must evaluate to a value (could be an address)
 - Store RHS value at LHS location
- * int x, y;
- $* \times = 0;$

32-bit example (pointers are 32-bits wide)

- Ieft-hand side = right-hand side;
 - LHS must evaluate to a *location*
 - RHS must evaluate to a *value* (could be an address)
 - Store RHS value at LHS location
- * int x, y;
- * X = 0;
- ☆ y = 0x3CD02700;

32-bit example (pointers are 32-bits wide)

- Ieft-hand side = right-hand side;
 - LHS must evaluate to a location
 - RHS must evaluate to a value (could be an address)
 - Store RHS value at LHS location
- * int x, y;
- * x = 0;
- * y = 0x3CD02700;
- - Get value at y, add 3, store in x

32-bit example (pointers are 32-bits wide)

- Ieft-hand side = right-hand side;
 - LHS must evaluate to a location
 - RHS must evaluate to a value (could be an address)
 - Store RHS value at LHS location
- * int x, y;
- * x = 0;
- * y = 0x3CD02700;
- - Get value at y, add 3, store in x
- * int* z;
 - z is at address 0x20

32-bit example (pointers are 32-bits wide)

& = "address of" * = "dereference"

- Ieft-hand side = right-hand side;
 - LHS must evaluate to a location
 - RHS must evaluate to a value (could be an address)

Pointer arithmetic

- Store RHS value at LHS location
- * int x, y;
- * x = 0;
- * y = 0x3CD02700;
- - Get value at y, add 3, store in x
- * int* z = &y + 3;
 - Get address of y, "add 3", store in z

13

- * int x, y;
- * x = 0;
- * y = 0x3CD02700;
- * x = y + 3;

Get value at y, add 3, store in x

- * int* z = &y + 3;
 - Get address of y, add 12, store in z

32-bit example (pointers are 32-bits wide)

$$* \times = 0;$$

Get value at y, add 3, store in x

$$* z = y;$$

 Get value of y, put in address stored in z 32-bit example (pointers are 32-bits wide)

Addresses and Pointers in C (Review)

 Draw out a box-and-arrow diagram for the result of the following C code:

int* ptr;

int x = 5;
int y = 2;
ptr = &x;
y = 1 + *ptr;

Arrays are adjacent locations in memory storing the same type of data object

a (array name) returns the array's address

Declaration: int a[6];

Indexing: a[0] = 0x015f; a[5] = a[0]; Arrays are adjacent locations in memory storing the same type of data object

a (array name) returns the array's address

&a[i] is the address of a[0] plus i times the element size in bytes

Declaration: int a [6];

Indexing: $a[0] = 0 \times 015f;$ a[5] = a[0];

No bounds $a[6] = 0 \times BAD;$ checking: $a[-1] = 0 \times BAD;$ Arrays are adjacent locations in memory storing the same type of data object

a (array name) returns the array's address

&a[i] is the address of a[0] plus i times the element size in bytes

Declaration: int a[6];

Indexing: a[0] = 0x015f; a[5] = a[0];

No bounds a[6] = 0xBAD;checking: a[-1] = 0xBAD;

Pointers: int* p; equivalent { p = a; p = &a[0]; *p = 0xA; Arrays are adjacent locations in memory storing the same type of data object

a (array name) returns the array's address

&a[i] is the address of a[0] plus i times
the element size in bytes

Declaration: int a[6];

Indexing: a[0] = 0x015f; a[5] = a[0];

No bounds a[6] = 0xBAD;checking: a[-1] = 0xBAD;

Pointers: int* p; equivalent $\begin{cases} p = a; \\ p = &a[0]; \\ *p = &0xA; \end{cases}$

array indexing = address arithmetic (both scaled by the size of the type)

equivalent
$$\begin{cases} p[1] = 0xB; \\ *(p+1) = 0xB; \\ p = p + 2; \end{cases}$$

Arrays are adjacent locations in memory storing the same type of data object

a (array name) returns the array's address

&a[i] is the address of a[0] plus i times
the element size in bytes

Declaration: int a[6];

Indexing: a[0] = 0x015f; a[5] = a[0];

No bounds a[6] = 0xBAD;checking: a[-1] = 0xBAD;

Pointers: int* p; equivalent $\begin{cases} p = a; \\ p = &a[0]; \\ p = &a[0]; \\ a[2] \\ a[4] \end{cases}$

array indexing = address arithmetic (both scaled by the size of the type)

equivalent
$$\begin{cases}
 p[1] = 0xB; \\
 *(p+1) = 0xB; \\
 p = p + 2;
 \end{cases}$$

*p = a[1] + 1;

P

Arrays are adjacent locations in memory storing the same type of data object

a (array name) returns the array's address

&a[i] is the address of a[0] plus i times the element size in bytes

Question: The variable values after Line 3 executes are shown on the right. What are they after Line 5?

Vote in Ed Lessons

1	<pre>void main() {</pre>		Data	Address
2	int $a[] = \{0x5, 0x10\};$		(hex)	_ (hex)
3	int* $p = a;$	<mark>a</mark> [0]	5	0x100
5	$\mathbf{IIC}^{*} \mathbf{p} = \mathbf{a}, \\ $	a[1]	10	
4	p = p + 1;			
5	*p = *p + 1;	р	100	
6	}			

	P	<mark>a</mark> [0]	<mark>a</mark> [1]
(A)	0x101	0x5	0x11
(B)	0x104	0x5	0x11
(C)	0x101	0x6	0x10
(D)	0x104	0x6	0x10

Representing strings (Review)

- C-style string stored as an array of bytes (char*)
 - No "String" keyword, unlike Java
 - Elements are one-byte ASCII codes for each character

32	space	48	0	64	@	80	Р	96	`	112	р
33	!	49	1	65	A	81	Q	97	а	113	q
34	"	50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	c	83	S	99	с	115	s
36	\$	52	4	68	D	84	Т	100	d	116	t
37	%	53	5	69	E	85	U	101	е	117	u
38	&	54	6	70	F	86	V	102	f	118	v
39	,	55	7	71	G	87	w	103	g	119	w
40	(56	8	72	н	88	Х	104	h	120	x
41)	57	9	73	1	89	Y	105	I	121	У
42	*	58	:	74	J	90	Z	106	j	122	z
43	+	59	;	75	к	91	[107	k	123	{
44	,	60	<	76	L	92	\	108	I	124	
45	-	61	=	77	м	93]	109	m	125	}
46		62	>	78	N	94	^	110	n	126	~
47	/	63	?	79	ο	95	_	111	о	127	del

ASCII: American Standard Code for Information Interchange

Representing strings (Review)

- C-style string stored as an array of bytes (char*)
 - No "String" keyword, unlike Java
 - Elements are one-byte ASCII codes for each character
 - Last character followed by a 0 byte ('\0') (a.k.a. the null character)

Decimal:	83	116	97	121	32	115	97	102	101	32	87	65	0
Hex:	0x53	0x74	0x61	0x79	0x20	0x73	0x61	0x66	0x65	0x20	0x57	0x41	0x00
Text:	'S'	't'	'a'	'y'	1 1	's'	'a'	'f'	'e'	1 1	'W'	'A'	'\0'

C (char = 1 byte)

Endianness and Strings

- Byte ordering (endianness) is not an issue for 1-byte values
 - The whole array does not constitute a single value
 - Individual elements are values; chars are single bytes

Examining Data Representations

- Code to print byte representation of data
 - Treat any data type as a byte array by casting its address to char*
 - C has unchecked casts !! DANGER !!

```
void show_bytes(char* start, int len) {
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2hhX\n", start+i, *(start+i));
    printf("\n");
}</pre>
```

- * printf directives:
 - %p Print pointer
 - \t Tab
 - %.2hhX Print value as char (hh) in hex (X), padding to 2 digits (.2)
 - New line

Examining Data Representations

- Code to print byte representation of data
 - Treat any data type as a byte array by casting its address to char*
 - C has unchecked casts !! DANGER !!

```
void show_bytes(char* start, int len) {
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2hhX\n", start+i, *(start+i));
    printf("\n");
}</pre>
```

```
void show_int(int x) {
   show_bytes( (char *) &x, sizeof(int));
}
```

show_bytes Execution Example

int x = 123456; // 0x00 01 E2 40
printf("int x = %d;\n", x);
show_int(x); // show_bytes((char *) &x, sizeof(int));

- Result (Linux x86-64):
 - Note: The addresses will change on each run (try it!), but fall in same general range

int $x = 123456;$	
0x7fffb245549c	0x40
0x7fffb245549d	0xE2
0x7fffb245549e	0x01
0x7fffb245549f	0x00

Summary

- Assignment in C results in value being put in memory location
- Pointer is a C representation of a data address
 - & = "address of" operator
 - * = "value at address" or "dereference" operator
- Pointer arithmetic scales by size of target type
 - Convenient when accessing array-like structures in memory
 - Be careful when using particularly when *casting* variables
- Arrays are adjacent locations in memory storing the same type of data object
 - Strings are null-terminated arrays of characters (ASCII)