The Hardware/Software Interface

CSE 351 Autumn 2021

Instructor:

Justin Hsia

Teaching Assistants:

Allie Pfleger

Anirudh Kumar

Assaf Vayner

Atharva Deodhar

Celeste Zeng

Dominick Ta

Francesca Wang

Hamsa Shankar

Isabella Nguyen

Joy Dang

Julia Wang

Maggie Jiang

Monty Nitschke

Morel Fotsing

Sanjana Chintalapati

AN x64 PROCESSOR IS SCREAMING ALONG AT BILLIONS OF CYCLES PER SECOND TO RUN THE XNU KERNEL, WHICH IS FRANTICALLY WORKING THROUGH ALL THE POSIX-SPECIFIED ABSTRACTION TO CREATE THE DARWIN SYSTEM UNDERLYING OS X, WHICH IN TURN IS STRAINING ITSELF TO RUN FIREFOX AND ITS GECKO RENDERER, WHICH CREATES A PLASH OBJECT WHICH RENDERS DOZENS OF VIDEO FRAMES EVERY SECOND

BECAUSE I WANTED TO SEE A CAT JUMP INTO A BOX AND FALL OVER.

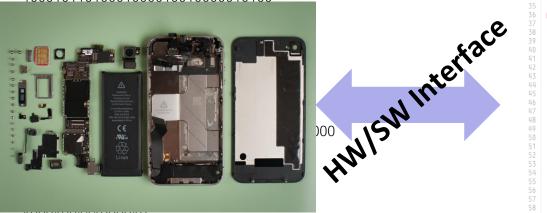
I AM A GOD.

Lecture Outline

- Course Introduction
- Course Policies
 - Return to in-person instruction
 - https://courses.cs.washington.edu/courses/cse351/21au/syllabus
- Binary and Numerical Representation

Introductions: Course Staff

- Instructor: just call me Justin
 - CSE Associate Teaching Professor 7th time teaching 351
 - Raising an infant this quarter (), will be tired



- Available in section, office hours, and on Ed Discussion
- More than anything, we want you to feel...
 - ✓ Comfortable and welcome in this space
 - ✓ Able to learn and succeed in this course
 - ✓ Comfortable reaching out if you need help or want change

Introductions: You!

- ~320 students registered, split across two lectures
- CSE majors, ECE majors, and more
 - Most of you will find almost everything in the course new
 - Many of you are new to CSE and/or UW (and campus)!
- Get to know each other! Help each other out!
 - Science says that learning happens best in groups
 - Working well with others is a valuable life skill
 - Diversity of perspectives expands your horizons
 - Take advantage of group work, where permissible, to learn, not just get a grade

Welcome to CSE351!

- Our goal is to teach you the key abstractions "under the hood"
 - How does your source code become something that your computer understands?
 - What happens as your computer is executing one or more processes?

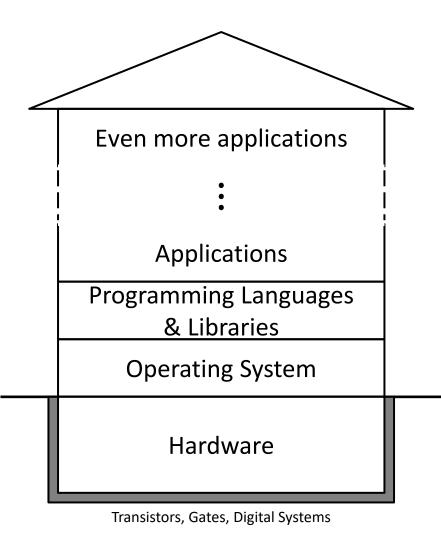
Layers of Computing Below Programming

Software Applications (written in Java, Python, C, etc.)

Programming Languages & Libraries (e.g., Java Runtime Env, C Standard Lib)

OS/App interface

HW/SW interface


Operating System (e.g., Linux, MacOS, Windows)

Hardware

(e.g., CPU, memory, disk, network, peripherals)

"House" of Computing Metaphor

- We continue to build upward but everything relies on the base & foundation
 - We'll explore parts of Hardware, OS, and PL
- Built a long time ago
 - Some parts have been updated over the years, some have not
 - More remodeling necessary, but should understand how and why things are this way before demolishing anything

Physics

The Hardware/Software Interface

- Topic Group 1: Data
 - Memory, Data, Integers, Floating Point, Arrays, Structs
- Topic Group 2: Programs
 - x86-64 Assembly, Procedures, Stacks, Executables
- * Topic Group 3: Scale & Coherence
 - Caches, Processes, Virtual Memory, Memory Allocation
- Learning in this class
 - You might miss Java, but we just ask you to keep your heart open; something unexpected might pique your interest!
 - Notice and nurture any wants to linger in some space
 - Many future classes to explore this space more

Some fun topics that we will touch on

- Which of the following seems the most interesting to you? (vote in Ed Lessons)
- a) What is a GFLOP and why is it used in computer benchmarks?
- b) How and why does running many programs for a long time eat into your memory (RAM)?
- c) What is stack overflow and how does it happen?
- d) Why does your computer slow down when you run out of disk space?
- e) What was the flaw behind the original Internet worm, the Heartbleed bug, and the Cloudbleed bug?
- What is the meaning behind the different CPU specifications?
 (e.g., # of cores, size of cache)

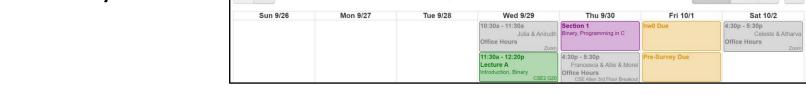
Lecture Outline

- Course Introduction
- Course Policies
 - Return to in-person instruction
 - https://courses.cs.washington.edu/courses/cse351/21au/syllabus
- Binary and Numerical Representation

Bookmarks

- Website: https://courses.cs.washington.edu/courses/cse351/21au/
 - Schedule, policies, materials, videos, assignment specs, etc.
- Ed Course: https://edstem.org/us/courses/7371
 - Discussion: announcements, ask and answer questions
 - Lessons: readings, lecture questions, homework
 - Resources: links to other tools and information
- Linked from website and Ed
 - Canvas: grade book, Zoom links
 - Gradescope: lab submissions
 - Panopto: lecture recordings

Return to In-person Instruction


- You should be prepared for the possibility of suddenly switching to remote instruction (temporarily or indefinitely)
 - This class is designed to allow for asynchronous learning
- Face coverings required during all indoor, in-person interactions (lecture, section, in-person office hours)
 - Short breaks to sip water are okay
- Maintain physical distancing as much as possible
- You are allowed to attend either lecture and any section, provided there is enough seating/room
 - Please give priority to those officially enrolled

Return to In-person Instruction

- Some office hours will be in-person and others virtual
 - Find scheduled office hours on the course website Events weekly view:

 Sep 29 Oct 2, 2021

 Sep 29 Oct 2, 2021

- Zoom meeting links found in Zoom tab within Canvas
 - We encourage you to chat with other students in the lobby if that TAs are in breakout rooms
- All office hours will use a Google Sheets queuing system
- Allen 3rd floor breakout limited to 19 people, please wait for

"Enter" status:

Concept/Clarifications Question Queue (<5 mins)				Debugging Queue (>10 mins)					
Name	TA	Status	Question Description	Time Queued	Name	TA	Status	Question Description	Time Queued
Example 1		Done	Question about floating point encoding range.		Example 2		Done +	Lab 5: running into a segfault in mm_malloc after reaching end of the heap.	
Leslie		Done	w two's complement negation		Yutong		In Progress •	Lab 1a segfault in selection sort	
Gabriela		Enter	bit shifting: logical vs arithmetic		Keysha		Enter +	lab 1a withinSameBlock incorrect values	
Ishaan		Enter	▼ endianness		Amadeus		Waiting +	Lab 1a selectionSort edge case	

Return to In-person Instruction

- Extenuating circumstances
 - Students (and staff) still face an extremely varied set of environments and circumstances
 - For formal accommodations, go through Disability Resources for Students (DRS)
 - We will try to be accommodating otherwise, but the earlier you reach out, the better
- Don't suffer in silence talk to a staff member!
 - We have a 1-on-1 meeting request form

Grading

Pre-lecture Readings: 5%

- Can reveal solution after one attempt (completion)
- Homework: 20% total

- Unlimited submission attempts (autograded correctness)
- Labs: 40% total

- Last submission graded (correctness)
- Exams: Midterm (16%) and Final (16%)

- Take-home; individual, but some discussion permitted
- EPA: Effort, Participation, and Altruism (3%)

Group Work in 351

- Group work will be emphasized in this class
 - Lecture and section will have built-in group work time
 - you will get the most out of it if you actively participate!
 - TAs will circle around the room and interact with groups
 - Raise your hand to get the attention of a staff member
 - Most assignments allow collaboration talking to classmates will help you synthesize concepts and terminology
 - The major takeaways for this course will be the ability to explain the major concepts verbally and/or in writing to others
 - However, the responsibility for learning falls on you

CSE351. Autumn 2021

Lab Collaboration and Academic Integrity

- All submissions are expected to be yours and yours alone
- You are encouraged to discuss your assignments with other students (ideas), but we expect that what you turn in is yours
- It is NOT acceptable to copy solutions from other students or to copy (or start your) solutions from the Web (including Github, Chegg, and similar sites)
- Our goal is that *YOU* learn the material so you will be prepared for exams, interviews, and the future

To-Do List

Admin

- Explore/read the course website thoroughly
- Check that you can access Ed Discussion & Lessons
- Get your machine set up to access the CSE Linux environment (CSE VM or attu) as soon as possible
- Optionally, sign up for CSE 391: System and Software Tools

L01: Introduction, Binary

Assignments

- Pre-Course Survey and hw0 due Friday (10/1)
- hw1 and Lab 0 due Monday (10/4)
- Pre-lecture readings due before each lecture 2 pm

Lecture Outline

- Course Introduction
- Course Policies
 - Return to in-person instruction
 - https://courses.cs.washington.edu/courses/cse351/21au/syllabus
- Binary and Numerical Representation

Reading Review

- Terminology:
 - numeral, digit, base, symbol, digit position, leading zeros
 - binary, bit, nibble, byte, hexadecimal
 - numerical representation, encoding scheme
- Questions from the Reading?

Review Questions

- What is the decimal value of the numeral 107₈?
 - A. 71
 - B. 87
 - C. 107
 - D. 568
- Represent
 0b100110110101101 in hex.

- What is the decimal number 108 in hex?
 - A. 0x6C

L01: Introduction, Binary

- **B.** 0xA8
- C. 0x108
- D. 0x612
- Represent 0x3C9 in binary.

Base Comparison

- Why does all of this matter?
 - Humans think about numbers in base
 10, but computers "think" about
 numbers in base 2
 - Binary encoding is what allows computers to do all of the amazing things that they do!
- You should have this table memorized by the end of the class
 - Might as well start now!

Base 10	Base 2	Base 16	
0	0000	0	
1	0001	1	
2	0010	2	
3	0011	3	
4	0100	4	
5	0101	5	
6	0110	6	
7	0111	7	
8	1000	8	
9	1001	9	
10	1010	Α	
11	1011	В	
12	1100	С	
13	1101	D	
14	1110	Е	
15	1111	F	

Numerical Encoding

- * AMAZING FACT: You can represent anything countable using numbers!
 - Need to agree on an encoding
 - Kind of like learning a new language
- Examples:
 - Decimal Integers: $0\rightarrow0b0$, $1\rightarrow0b1$, $2\rightarrow0b10$, etc.
 - English Letters: CSE \rightarrow 0x435345, yay \rightarrow 0x796179
 - Emoticons: ② 0x0, ② 0x1, ③ 0x2, ⑤ 0x3, ③ 0x4, ② 0x5

Binary Encoding

- With n binary digits, how many "things" can you represent?
 - Need n binary digits to represent N things, where $2^n \ge N$
 - Example: 5 binary digits for alphabet because $2^5 = 32 > 26$

- A binary digit is known as a bit
- A group of 4 bits (1 hex digit) is called a nibble
- A group of 8 bits (2 hex digits) is called a byte
 - 1 bit \rightarrow 2 things, 1 nibble \rightarrow 16 things, 1 byte \rightarrow 256 things

So What's It Mean?

- A sequence of bits can have many meanings!
- Consider the hex sequence 0x4E6F21
 - Common interpretations include:
 - The decimal number 5140257
 - The real number 7.203034×10^{-39}
 - The characters "No!"
 - The background color of this slide
- It is up to the program/programmer to decide how to interpret the sequence of bits

Binary Encoding – Characters/Text

- ASCII Encoding (<u>www.asciitable.com</u>)
 - American Standard Code for Information Interchange

```
Dec Hx Oct Html Chr
                                                        Dec Hx Oct Html Chrl Dec Hx Oct Html Chr
Dec Hx Oct Char
  0 000 NUL (null)
                                    32 20 040   Space
                                                         64 40 100 @ 0
                                                                           96 60 140 @#96;
 1 1 001 SOH (start of heading)
                                    33 21 041 ! !
                                                         65 41 101 A A
                                                                           97 61 141 @#97;
                                    34 22 042 4#34; "
    2 002 STX (start of text)
                                                         66 42 102 B B
                                                                           98 62 142 4#98;
   3 003 ETX (end of text)
                                    35 23 043 # #
                                                         67 43 103 C C
                                                                           99 63 143 4#99;
    4 004 EOT (end of transmission)
                                    36 24 044 $ 🕏
                                                         68 44 104 D D
   5 005 ENQ (enquiry)
                                    37 25 045 % 🕏
                                                         70 46 106 @#70; F
    6 006 ACK (acknowledge)
                                    38 26 046 & &
   7 007 BEL (bell)
                                    39 27 047 4#39; '
                                                                  <u>∠</u>#71; G
   8 010 BS
             (backspace)
                                    40 28 050 ( (
  9 011 TAB (horizontal tab)
                                     41 29 051 ) )
                                                         73 49
                                     42 2A 052 * *
10 A 012 LF
             (NL line feed, new line)
                                     43 2B 053 &#4
             (vertical tab)
                                                                          107 65 153 k k
  B 013 VT
12 C 014 FF
             (NP form feed, new page)
                                    44 2C 0
                                                                          108 6C 154 l l
   D 015 CR
             (carriage return)
                                     45 2D 0
                                                                          109 6D 155 m 🍱
14 E 016 SO
             (shift out)
                                                                          110 6E 156 n n
                                     € 2F 057
15 F 017 SI
             (shift in)
                                                         79 4F 117 O 0
                                                                          111 6F 157 o 0
                                          060 3448; 0
                                                                          112 70 160 p p
16 10 020 DLE (data link escap)
                                                         80 50 120 P P
                                          061 @#49; ]
17 11 021 DC1
             (d(
                .ce cor
                                                         81 51 121 Q 🔾
                                                                          113 71 161 q q
18 12 022 DC2
                                     50 32 062 2 2
                                                                          114 72 162 r <u>r</u>
                                                         82 52 122 R R
19 13 023
                                     51 33 063 3 3
                                                         83 53 123 S 💲
                                                                          |115 73 163 s 3
                                     52 34 064 4 4
                                                         84 54 124 T T
                                                                          |116 74 164 t <sup>t</sup>
                                     53 35 065 5 5
                                                         85 55 125 U U
                                                                          117 75 165 u u
                   ve acknowledge)
              nchronous idle)
                                     54 36 066 6 6
                                                         86 56 126 V V
                                                                          118 76 166 v V
23 17 02 B (end of trans. block)
                                    55 37 067 4#55; 7
                                                         87 57 127 W W
                                                                          119 77 167 w ₩
24 18 030 CAN (cancel)
                                     56 38 070 8 <mark>8</mark>
                                                         88 58 130 X X
                                                                          120 78 170 x X
25 19 031 EM
             (end of medium)
                                    57 39 071 4#57; 9
                                                         89 59 131 Y Y
                                                                          121 79 171 y Y
26 1A 032 SUB (substitute)
                                    58 3A 072 : :
                                                         90 5A 132 Z Z
                                                                          |122 7A 172 z Z
                                    59 3B 073 &#59; ;
                                                         91 5B 133 [ [
                                                                          |123 7B 173 { {
27 1B 033 ESC (escape)
             (file separator)
                                    60 3C 074 < <
                                                         92 5C 134 @#92; \
                                                                          124 7C 174 |
28 1C 034 FS
29 1D 035 GS
             (group separator)
                                    61 3D 075 = =
                                                         93 5D 135 ] ]
                                                                          62 3E 076 > >
                                                         94 5E 136 @#94; ^
                                                                          126 7E 176 ~
30 1E 036 RS
             (record separator)
                                                                         127 7F 177 @#127; DEL
31 1F 037 US
             (unit separator)
                                    63 3F 077 ? ?
                                                         95 5F 137 _
```

Binary Encoding – Characters/Text

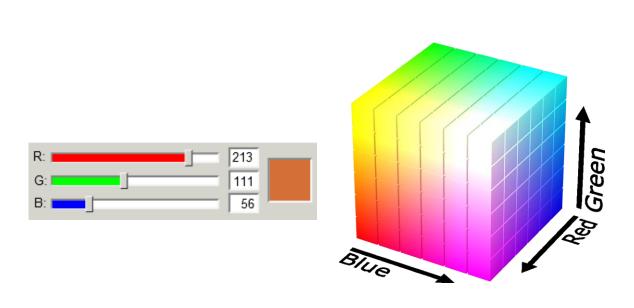
- ASCII Encoding (<u>www.asciitable.com</u>)
 - American Standard Code for Information Interchange
- Created in 1963
 - Memory was expensive, 32KB in brand new machines
 - Economic incentive to use fewer bits for encoding

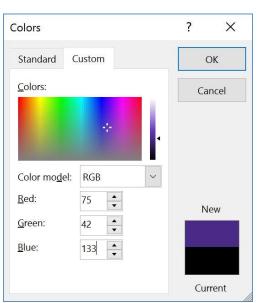
Design Goals:

- Represent everything on an American typewriter as efficiently as possible
- Organize similar characters together
 - Numbers, uppercase, lowercase, then other stuff

Binary Encoding – Unicode & Emoji

- Unicode Standard is managed by the Unicode Consortium
 - "Universal language" that uses 1-4 bytes to represent a much larger range of characters/languages, including emoji
 - Adds new emojis every year, though adoption often lags: <a>\mathbb{I}
 - https://emojipedia.org/new/
- * Emojipedia demo: http://www.emojipedia.org
 - Desktop Computer:
 - Code points: U+1F5A5, U+FE0F
 - Display:





Binary Encoding – Colors

- RGB Red, Green, Blue
 - Additive color model (light): byte (8 bits) for each color
 - Commonly seen in hex (in HTML, photo editing, etc.)
 - Examples: Blue→0x0000FF, Gold→0xFFD700, White→0xFFFFF, Deep Pink→0xFF1493

Binary Encoding – Files and Programs

- At the lowest level, all digital data is stored as bits!
- Layers of abstraction keep everything comprehensible
 - Data/files are groups of bits interpreted by program
 - Program is actually groups of bits being interpreted by your
 CPU
- Computer Memory Demo (if time)
 - From vim: %!xxd
 - From emacs: M-x hexl-mode

Summary

- Humans think about numbers in decimal; computers think about numbers in binary
 - Base conversion to go between them
 - Hexadecimal is more human-readable than binary
- All information on a computer is binary
- Binary encoding can represent anything!
 - Computer/program needs to know how to interpret the bits
 - Encodings aren't "neutral"; priorities are baked in