
CSE 351 Section 9

Dynamic Memory Allocation

Dynamic Memory
● Dynamic memory is memory that is “requested” at run-time

● Solves two fundamental dilemmas:
○ How can we control the amount memory used based on run time

conditions?
○ How can we control the lifetime of memory?

● Important to understand how dynamic memory works:
○ We want to use allocators efficiently
○ Can result in many errors if used incorrectly

Example Program: why dynamic allocation?
Goal: Dynamically add/remove/sort nodes in a large linked list

Option 1: Without dynamically-allocated memory:

● Use the mmap() or equivalent system call to map a virtual address to a page of
physical memory
○ This essentially gives you a page of memory to use

● Use pointer addition/subtraction to segment the page into linked list nodes
● Manage which regions of the page have been used
● Request a new page when that one fills up
● MESSY! NOBODY DOES THIS!

Example Program: why dynamic allocation?
Goal: Dynamically add/remove/sort nodes in a large linked list

Option 2: With dynamically-allocated memory:

● Use malloc() from the C standard library to request a node-sized chunk of
memory for every node in the linked list

● When removing a node, simply carry out the necessary pointer manipulation
and use free() to allow that space to be used for something else

● You will come to love malloc() because it does all the heap management for
you…

● …But for the next week it may be more annoying because you are in charge of
implementing it

malloc()

● Provided to you by the C standard library using #include <stdlib.h>
● Programs allocate blocks from the heap by calling the malloc() function
● The heap is the memory region dedicated to dynamic storage
● Run man malloc in a linux terminal for more information!

● How to use malloc():
○ Takes a size_t representing the number of bytes requested
○ Returns a void* pointing to the start of the block or NULL if there was

an error
int* array = (int*) malloc(10 * sizeof(int));

free()
● Also part of the C standard library
● Programmers also need to be able to “free up” dynamically-allocated memory

that they no longer need
● Simply pass free() a pointer to a block received from malloc()
● Using free() allows for more efficient heap usage

○ Later calls to malloc() will be able to re-use that block

int* array = (int*) malloc(10 * sizeof(int));
...
free(array);

free()

Double-free
● This occurs when you free the same block twice
● It usually results in a segmentation fault

○ It will become more apparent why when you learn how malloc() is
implemented

int* array = (int*) malloc(10 * sizeof(int));
...
free(array);
free(array); // Double free...ouch...

The Heap
What does the heap look like exactly?

● Imagine a giant contiguous region of memory

● This region is segmented into free blocks and used blocks

● Consecutive free blocks form what we call a “free list”
● Two types of free lists:

○ Implicit: use block sizes to traverse the heap looking for a free block
○ Explicit: use doubly linked list of free blocks to find a free block

Implicit vs. Explicit Free List

40 32 48 16

40 32 48 16

Implicit: Using sizes to traverse blocks, checking to see if each block is allocated

Explicit: Using pointers to create linked list of free blocks

Block Header Format

● Each block needs to indicate its size, if it is used, and if the prev block is used
● Could use two 8-byte fields, but wastes a lot of space
● Standard trick:

○ Since size will always be aligned to a certain multiple of 2, some of the
lower order bits will be 0 (for instance if all sizes are multiples of 8, the
lowest 3 bits will always be 0)

○ Can store additional tag information in those lowest bits
○ Just need to remember to mask them away when reading the size (see

the SIZE macro in the lab5 starter code!)

Block Header Format
● Every block has a 8-byte (64-bit) header
● Three of those bits are used for tags

○ LSB is set if the block is currently used (not in the free list)
○ Next bit (to the left) is set if the block preceding it in memory is used
○ The third bit is not used

● The upper 61 bits store the size of the block
● This 64-bit value is also referred to as the block’s “sizeAndTags”

+---+
| 63 | 62 | 61 | 60 | . . .| 3 | 2 | 1 | 0 |
+---+

Used?
Prev
Used?

XSize

Free Blocks

A free block has:

● A sizeAndTags value on either side of the free space.
● Pointers to the next and previous blocks in the list

Remember, the blocks are not necessarily in address
order, so the pointers can point to blocks anywhere in
the heap

● Each free block is a BlockInfo struct followed by free
space and the boundary tag (footer)

sizeAndTags

struct BlockInfo *next

struct BlockInfo *prev

Free space

sizeAndTags

struct BlockInfo {
 size_t sizeAndTags;
 struct BlockInfo *next;
 struct BlockInfo *prev;
};

struct BlockInfo

Used Blocks

● Used blocks only have a sizeAndTags, followed by the
payload

● The payload is the actual block of memory returned to a
user program that invokes malloc()

Example:

int* a = (int*) malloc(10 * sizeof(int));

a points to the payload (not the start of the block!)

sizeAndTags

payload

Walkthrough of Example Heap

2
5

6
 :

1
 :

0

FREE_LIST_HEAD

Initial Heap

Note FREE_LIST_HEAD always points to the first block in the free list

2
5

6
 :

1
 :

0

Walkthrough of Example Heap

2
5

6
 :

1
 :

0

FREE_LIST_HEAD

void *ptr1 = malloc(32);

● Need to search free list to find a block big enough for 40 (32 + header) bytes

2
5

6
 :

1
 :

0

Walkthrough of Example Heap

4
0

 :
1

 :
1

FREE_LIST_HEAD

void *ptr1 = malloc(32);

● Note that ptr1 points to the start of the payload, NOT the start of the block
● The initially 256 byte free block is split to maximize memory usage!

2
1

6
 :

1
 :

0

2
1

6
 :

1
 :

0

ptr1

Walkthrough of Example Heap

4
0

 :
1

 :
1

FREE_LIST_HEAD

void *ptr2 = malloc(16);

● Only need a block of 24 (16 + header) bytes, but what if we needed to free it
later… think about what the minimum block size needs to be

2
1

6
 :

1
 :

0

2
1

6
 :

1
 :

0

ptr1

Walkthrough of Example Heap

4
0

 :
1

 :
1

FREE_LIST_HEAD

void *ptr2 = malloc(16);

● Need at least 32 bytes to create a free block, meaning we must allocate at least
this much for a used block!

3
2

 :
1

 :
1

1
8

4
 :

1
 :

0

ptr1

1
8

4
 :

1
 :

0

ptr2

Walkthrough of Example Heap

4
0

 :
1

 :
1

FREE_LIST_HEAD

void *ptr3 = malloc(24);

● Same procedure as before
3

2
 :

1
 :

1

1
8

4
 :

1
 :

0

ptr1

1
8

4
 :

1
 :

0

ptr2

Walkthrough of Example Heap

4
0

 :
1

 :
1

FREE_LIST_HEAD

void *ptr3 = malloc(24);

● Same procedure as before
3

2
 :

1
 :

1

1
5

2
 :

1
 :

0

ptr1

3
2

 :
1

 :
1

ptr2

1
5

2
 :

1
 :

0

ptr3

Walkthrough of Example Heap

4
0

 :
1

 :
1

FREE_LIST_HEAD

free(ptr2);

● Now we need to free a block!
3

2
 :

1
 :

1

1
5

2
 :

1
 :

0

ptr1

3
2

 :
1

 :
1

ptr2

1
5

2
 :

1
 :

0

ptr3

Walkthrough of Example Heap

4
0

 :
1

 :
1

FREE_LIST_HEAD

free(ptr2);
● Need to insert block allocated for ptr2 into the free list (and update tags!)
● Which tags get updated?

3
2

 :
1

 :
0

1
5

2
 :

1
 :

0

ptr1

3
2

 :
0

 :
1

1
5

2
 :

1
 :

0

ptr3

3
2

 :
1

 :
0

Walkthrough of Example Heap

4
0

 :
1

 :
1

FREE_LIST_HEAD

free(ptr3);
● Same thing as before, except now the pointers get really messy...

3
2

 :
1

 :
0

1
5

2
 :

1
 :

0

ptr1

3
2

 :
0

 :
1

1
5

2
 :

1
 :

0

ptr3

3
2

 :
1

 :
0

Walkthrough of Example Heap

4
0

 :
1

 :
1

FREE_LIST_HEAD

free(ptr3);
● Same thing as before, except now the pointers get really messy…

○ next pointers are the ones higher up in the diagram, prev lower down...
3

2
 :

1
 :

0

1
5

2
 :

0
 :

0

ptr1

3
2

 :
0

 :
0

1
5

2
 :

0
 :

0

3
2

 :
1

 :
0

3
2

 :
0

 :
0

Walkthrough of Example Heap

4
0

 :
1

 :
1

FREE_LIST_HEAD

free(ptr3);
● Good enough? What happens if user calls malloc(200)?

3
2

 :
1

 :
0

1
5

2
 :

0
 :

0

ptr1

3
2

 :
0

 :
0

1
5

2
 :

0
 :

0

3
2

 :
1

 :
0

3
2

 :
0

 :
0

Walkthrough of Example Heap

4
0

 :
1

 :
1

FREE_LIST_HEAD

free(ptr3);
● Coalesce neighboring free blocks into one large free block!
● Allows for larger future mallocs, can still split later for smaller chunks

2
1

6
 :

1
 :

0

2
1

6
 :

1
 :

0

ptr1

Lab 5

● You get to implement malloc() and free()!
● Less overwhelming than it may sound, we give you many functions already

including:
○ searchFreeList()
○ insertFreeBlock()
○ removeFreeBlock()
○ coalesceFreeBlock()
○ requestMoreSpace()
○ see spec/starter code for full list!

Some notes about implementing malloc()
● Figure out how big a block you need

● Call searchFreeList() to get a free block that is large enough
○ NOTE: If you request 16 bytes, it might give you a block that is 500 bytes

● Remove that block from the list
○ Might have to splice into a smaller/bigger chunk (see NOTE above)

● Update size + tags appropriately (do neighbor blocks need updating?)

● Return a pointer to the payload of that block

Some notes about implementing free()

● Remember, the pointer you are passed is to the payload!

● Convert the given used block into a free block

● Insert it into the free list

● Update size + tags appropriately (do neighbor blocks need updating?)

● Coalesce if necessary by calling coalesceFreeBlock()

C Macros
Pre-compile time “find and replace” your code text
Defining constants:
● #define NUM_ENTRIES 100

○ OK
Defining simple operations:
● #define twice(x) 2*x

○ Not OK, twice(x+1) becomes 2*x+1 because preprocessor uses naive
find and replace

● #define twice(x) (2*(x))
○ OK, now twice(x+1) becomes 2*(x+1)
○ Always wrap in parentheses!

Why even use Macros?

● Why macros?
○ Create more readable/reusable code for constants
○ “Faster” than function calls
○ In malloc: Quick access to header information (payload size, valid)

● Drawbacks
○ Less expressive than functions
○ Arguments are not typechecked, local variables
○ They can easily lead to errors that are more difficult to find (see prev slide)

Some Lab 5 Provided Macros

● UNSCALED_POINTER_ADD(p,x) Add without using “pointer arithmetic”
● UNSCALED_POINTER_SUB(p,x) Subtract without using “pointer arithmetic”
● MIN_BLOCK_SIZE The size of the smallest block that is safe to allocate
● SIZE(x) Gets the size from ‘sizeAndTags’
● TAG_USED Mask for the used tag
● TAG_PRECEDING_USED Mask for the preceding used tag
● …
● There are lots more, don’t forget to use them!

○ They will absolutely make your life easier
○ Part of good C style (which will be part of this assignment’s grade)

Getting Started Lab5:

● If you are struggling to understand where to get started, read through
coalesceFreeBlock()
○ Understanding the details of this function will provide clarity on the

general structure you are manipulating
● Make sure you use the provided macros!

○ They work, so it will help minimize bugs
○ More readable code

