CSE 351 Section 9

Dynamic Memory Allocation

Dynamic Memory

e Dynamic memory is memory that is “requested” at run-time

e Solves two fundamental dilemmas:
o How can we control the amount memory used based on run time
conditions?
o How can we control the lifetime of memory?

e Important to understand how dynamic memory works:
o We want to use allocators efficiently
o Canresultin many errors if used incorrectly

Example Program: why dynamic allocation?

Goal: Dynamically add/remove/sort nodes in a large linked list
Option 1: Without dynamically-allocated memory:

e Usethemmap () or equivalent system call to map a virtual address to a page of
physical memory

o This essentially gives you a page of memory to use
Use pointer addition/subtraction to segment the page into linked list nodes
Manage which regions of the page have been used
Request a new page when that one fills up
MESSY! NOBODY DOES THIS!

Example Program: why dynamic allocation?

Goal: Dynamically add/remove/sort nodes in a large linked list

Option 2: With dynamically-allocated memory:

e Usemalloc () fromthe Cstandard library to request a node-sized chunk of
memory for every node in the linked list

e Whenremoving a node, simply carry out the necessary pointer manipulation
and use free () to allow that space to be used for something else

e Youwillcometolovemalloc () because it does all the heap management for
you...

e ...Butfor the next week it may be more annoying because you are in charge of

implementing it

malloc ()

Provided to you by the C standard library using #include <stdlib.h>
Programs allocate blocks from the heap by calling themalloc () function
The heap is the memory region dedicated to dynamic storage

Runman mallocin alinux terminal for more information!

How tousemalloc():
o Takesasize trepresentingthe number of bytes requested
o Returns avoid* pointing to the start of the block or NULL if there was
an error
int* array = (int*) malloc (10 * sizeof(int));

free ()

e Also part of the C standard library
Programmers also need to be able to “free up” dynamically-allocated memory
that they no longer need
Simply pass free() a pointer to a block received from malloc()
e Using free() allows for more efficient heap usage
o Later calls to malloc() will be able to re-use that block

int* array = (int*) malloc (10 * sizeof(int));

free (array) ;

free ()

Double-free
e This occurs when you free the same block twice
e |tusually results in a segmentation fault
o It will become more apparent why when you learn how malloc() is
implemented

int* array = (int*) malloc (10 * sizeof(int));

free (array) ;
free (array); // Double free...ouch...

The Heap

What does the heap look like exactly?
e Imagine a giant contiguous region of memory
e Thisregionis segmented into free blocks and used blocks
e Consecutive free blocks form what we call a “free list”
e Two types of free lists:

o Implicit: use block sizes to traverse the heap looking for a free block
o Explicit: use doubly linked list of free blocks to find a free block

Implicit vs. Explicit Free List

Implicit: Using sizes to traverse blocks, checking to see if each block is allocated

- -

40

=~
~~

-
-
-
,/
S~ 4
N '
~ 7’
~
‘~] ’

Explicit: Using pointers to create linked list of free blocks

40

.

48

Block Header Format

e Each block needs to indicate its size, if it is used, and if the prev block is used
e Could use two 8-byte fields, but wastes a lot of space
e Standard trick:
o Since size will always be aligned to a certain multiple of 2, some of the
lower order bits will be O (for instance if all sizes are multiples of 8, the
lowest 3 bits will always be 0)
o Can store additional tag information in those lowest bits
Just need to remember to mask them away when reading the size (see
the SIZE macro in the lab5 starter code!)

Block Header Format

Every block has a 8-byte (64-bit) header

Three of those bits are used for tags
o LSBis set if the block is currently used (not in the free list)
o Next bit (to the left) is set if the block preceding it in memory is used
o The third bit is not used

The upper 61 bits store the size of the block

This 64-bit value is also referred to as the block’s “sizeAndTags”

o - +
| 63 | 62 | 61 | 60 | | 31 2 | 1| 0 |
et +
Prev
Size X Used?U d

sizeAndTags

struct BlockInfo *next
struct BlockInfo

struct BlockInfo *prev

Free Blocks

Free space
A free block has:

e AsizeAndTags value on either side of the free space. sizeAndTags

e Pointers to the next and previous blocks in the list
Remember, the blocks are not necessarily in address

order, so the pointers can point to blocks anywherein Struct Blockinfo {
the heap size t sizeAndTags;

struct BlockInfo *next;
e Eachfreeblock is a BlocklInfo struct followed by free struct BlockInfo *prev;

space and the boundary tag (footer) b

Used Blocks

e Used blocks only have a sizeAndTags, followed by the
payload

e The payload is the actual block of memory returned to a
user program that invokes malloc()

Example:

int* a = (int*) malloc (10 * sizeof(int));

a points to the payload (not the start of the block!)

Walkthrough of Example Heap

Initial Heap

Note FREE_LIST_HEAD always points to the first block in the free list

256:1:0

256:1:0

FREE_LIST_HEAD

Walkthrough of Example Heap
void *ptrl = malloc(32);

e Need tosearch free list to find a block big enough for 40 (32 + header) bytes

256:1:0

256:1:0

FREE_LIST_HEAD

Walkthrough of Example Heap
void *ptr1 = malloc(32);

e Note that ptrl points to the start of the payload, NOT the start of the block
e Theinitially 256 byte free block is split to maximize memory usage!

216:1:0

216:1:0

ptrl FREE_LIST_HEAD

Walkthrough of Example Heap
void *ptr2 = malloc(16);

e Only need a block of 24 (16 + header) bytes, but what if we needed to free it
later... think about what the minimum block size needs to be

216:1:0

216:1:0

ptrl FREE_LIST_HEAD

Walkthrough of Example Heap

void *ptr2 = malloc(16);

e Need at least 32 bytes to create a free block, meaning we must allocate at least
this much for a used block!

184:1:0

184:1:0

ptrl ptr2 FREE_LIST_HEAD

Walkthrough of Example Heap

void *ptr3 = malloc(24);

e Same procedure as before

184:1:0

184:1:0

ptrl ptr2 FREE_LIST_HEAD

Walkthrough of Example Heap

void *ptr3 = malloc(24);

e Same procedure as before

152:1:0

152:1:0

ptrl ptr2 ptr3 FREE_LIST_HEAD

Walkthrough of Example Heap

free(ptr2);

e Now we need to free a block!

152:1:0

152:1:0

ptrl ptr2 ptr3 FREE_LIST_HEAD

Walkthrough of Example Heap

free(ptr2);
e Need toinsert block allocated for ptr2 into the free list (and update tags!)
e Which tags get updated?

T

152:1:0

ptrl FREE_LIST HEAD Ptr3

Walkthrough of Example Heap

free(ptr3);
e Same thing as before, except now the pointers get really messy...

T

152:1:0

ptrl FREE_LIST HEAD Ptr3

Walkthrough of Example Heap

free(ptr3);
e Same thing as before, except now the pointers get really messy...
o next pointers are the ones higher up in the diagram, prev lower down...

> T

o ol o ol @ =

- — | O o o O

L Py oo N N

N NN N

™ PR |8 3
\ _—

ptrl

FREE_LIST_HEAD

Walkthrough of Example Heap

free(ptr3);
e Good enough? What happens if user calls malloc(200)?

> T

o o | © o o o

-l - | O o o O

o0 oo N N

N N N

™ S| @ ™ |9 =)
\ /

ptrl

FREE_LIST_HEAD

Walkthrough of Example Heap

free(ptr3);
e Coalesce neighboring free blocks into one large free block!
e Allows for larger future mallocs, can still split later for smaller chunks

216:1:0

216:1:0

ptrl FREE_LIST_HEAD

Lab 5

e You get toimplement malloc() and free()!

e Less overwhelming than it may sound, we give you many functions already
including:

searchFreelist ()

insertFreeBlock ()

removeFreeBlock ()

coalesceFreeBlock ()

requestMoreSpace ()

see spec/starter code for full list!

o O O O O O

Some notes about implementingmalloc ()

Figure out how big a block you need

Call searchFreeList () to get afree block that is large enough
o NOTE: If you request 16 bytes, it might give you a block that is 500 bytes

Remove that block from the list
o Might have to splice into a smaller/bigger chunk (see NOTE above)

Update size + tags appropriately (do neighbor blocks need updating?)

Return a pointer to the payload of that block

Some notes about implementing free ()

Remember, the pointer you are passed is to the payload!

Convert the given used block into a free block

Insert it into the free list

Update size + tags appropriately (do neighbor blocks need updating?)

Coalesce if necessary by calling coalesceFreeBlock ()

C Macros

Pre-compile time “find and replace” your code text
Defining constants:
e #define NUM ENTRIES 100
o OK
Defining simple operations:
o }define twice(x) 2*x
o NotOK, twice (x+1) becomes 2*x+1 because preprocessor uses naive
find and replace
o }define twice(x) (2*(x))
o OK,now twice (x+1) becomes 2* (x+1)
o Always wrap in parentheses!

Why even use Macros?

e Why macros?
o Create more readable/reusable code for constants
o “Faster” than function calls
o Inmalloc: Quick access to header information (payload size, valid)
e Drawbacks
o Less expressive than functions
o Arguments are not typechecked, local variables
o They can easily lead to errors that are more difficult to find (see prev slide)

Some Lab 5 Provided Macros

UNSCALED POINTER ADD (p,x) Addwithout using “pointer arithmetic”
UNSCALED POINTER SUB (p,x) Subtract without using “pointer arithmetic”
MIN BLOCK SIZE The size of the smallest block that is safe to allocate

SIZE (x) Gets the size from ‘sizeAndTags’

TAG_USED Mask for the used tag

TAG PRECEDING USED Mask for the preceding used tag

There are lots more, don’t forget to use them!
o They will absolutely make your life easier
o Part of good C style (which will be part of this assignment’s grade)

Getting Started Labs:

e If you are struggling to understand where to get started, read through
coalesceFreeBlock()
o Understanding the details of this function will provide clarity on the
general structure you are manipulating
e Make sure you use the provided macros!
o Theywork, so it will help minimize bugs
o Morereadable code

