
Name: _______________________________

1. Number Representation (20 pts)

Consider the binary value 1101012:

(a) Interpreting this value as an unsigned 6-bit integer, what is its value in decimal? 

2^5+2^4+2^2+2^0 = 32 + 16 + 4 + 1 = 53 

(b) If we instead interpret it as a signed (two’s complement) 6-bit integer, what would its value be
in decimal? 

-2^5 + 2^4 + 2^2 + 2^0 = -32 + 16 + 4 + 1 = -11 

(most significant bit becomes "negatively weighted")  

(c) Assuming these are all signed two’s complement 6-bit integers, compute the result (leaving it in
binary is fine) of each of the following additions. For each, indicate if it resulted in overflow. 

Result: 

Overflow?

Overflow only occurs for signed addition if the result comes out wrong. The easiest way to
determine this is by looking at the signs: if 2 positive values result in a negative result, or 2
negatives result in a positive, then overflow must have occurred. 

9 001001 -15 110001 011001 101111

-10 + 110110 -5 + 111011 + 001100 + 011111

 of 2 12

No No Yes No

111111 1 101100 100101 1 001110

Note: TMIN = -32

Sp16 Midterm Q1 Solutions

Name: _______________________________

 

Now assume that our fictional machine with 6-bit integers also has a 6-bit IEEE-like floating point
type, with 1 bit for the sign, 3 bits for the exponent (exp) with a bias of 3, and 2 bits to represent the
mantissa (frac), not counting implicit bits.

(d) If we reinterpret the bits of our binary value from above as our 6-bit floating point type, what
value, in decimal, do we get?

 
 

-1.012 * 2^(4+1-3) = -1.012 * 2^2 = -1012 = -5 
 
 
 

(e) If we treat 1101012 as a signed integer, as we did in (b), and then cast it to a 6-bit floating point
value, do we get the correct value in decimal? (That is, can we represent that value in our 6-bit
float?) If yes, what is the binary representation? If not, why not? (and in that case you do not need
to determine the rounded bit representation)  
 
 
No, we cannot represent it exactly because there are not enough bits for the mantissa. 
 
To determine this, we have to find out what the mantissa would be once we are in "sign-
and-magnitude" style: 110101 (-11) → 001011 (+11). In normalized form, this would be:  
(-1)^1 * 1.011 * 2^3, which means frac would need to be 011, which doesn’t fit in 2 bits. 
 

(f) Assuming the same rules as standard IEEE floating point, what value (in decimal) does the
following represent?

 
0.0 (it is a denormalized case) 

1 1 0 1 0 1

sign exp frac

0 0 0 0 0 0

sign exp frac

 of 3 12

Name: 1 NUMBER REPRESENTATION(10 POINTS)

1 Number Representation(10 points)

Let x=0xE and y=0x7 be integers stored on a machine with a word size of 4bits. Show your work with the
following math operations. The answers—including truncation—should match those given by our
hypothetical machine with 4-bit registers.

A. (2pt) What hex value is the result of adding these two numbers?

In hex: 0xE + 0x7 = 0x15 → 0x5
In binary converted back to hex: 0xE + 0x7 = 1110 + 0111 = 10101 → 0101 = 0x5
Half credit for not truncating to the appropriate value.

B. (2pt) Interpreting these numbers as unsigned ints, what is the decimal result of adding x + y?

In unsigned decimal: 0xE + 0x7 = 14 + 7 = 21 % 16 = 5
Half credit for not truncating to the appropriate value or incorrect conversion.
No credit for computing in signed decimal

C. (2pt) Interpreting x and y as two’s complement integers, what is the decimal result of computing x−y?

In signed decimal: 0xE - 0x7 =¿ -2 - 7 = -9 → 7
Half credit for not truncating to the appropriate value, or incorrect conversion.
No credit for computing in unsigned decimal

D. (2pt) In one word, what is the phenomenon happening in 1B?

Overflow.

E. (2pt) Circle all statements below that are TRUE on a 32-bit architecture:
Half point each.

• It is possible to lose precision when converting from an int to a float. True

• It is possible to lose precision when converting from a float to an int. True

• It is possible to lose precision when converting from an int into a double. False

• It is possible to lose precision when converting from a double into an int. True

2 of 10

Sp15 Midterm Q1 Solutions

UW NetID: abcde

Question 2: Pointers (30 total points)

For this problem we are using a 64-bit x86-64 machine (little endian). The current state of memory
(values in hex) is shown below:

Word
Addr

+0 +1 +2 +3 +4 +5 +6 +7

0x00 BD 28 ED 02 35 72 3A AF
0x08 66 6F B1 E9 00 FF 5D 4D
0x10 86 06 04 30 64 31 8C B3
0x18 63 78 1E 1C 25 34 EE 93
0x20 42 6C 65 67 DE AD BE EF
0x28 CA FE D0 0D 1E 93 FA CE

(a) (16 points) Write the value in hexadecimal of each expression within the commented lines at
their respective state in the execution of the given program. Write UNKNOWN in the blank if the
value cannot be determined.

int main(int argc, char** argv) {
char *charP;
short *shortP;
int *intP = 0x00;
long *longP = 0x28;

// The value of intP is: 0x 00 00 00 00 00 00 00 00

// *intP 0x 02 ED 28 BD

// &intP 0x UNKNOWN

// longP[-2] 0x 93 EE 34 25 1C 1E 78 63

charP = 0x20;
shortP = (short *) intP;
intP++;
longP--;

// *shortP 0x 28 BD

// *intP 0x AF 3A 72 35

// *((int*) longP) 0x 67 65 6C 42

// (short*) (((long*) charP) - 2) 0x 10
}

4

Wi19 Midterm Q2 Solutions

SID: 1234567

3

Question 2: Pointers & Memory [12 pts]

For this problem we are using a 64-bit x86-64 machine (little endian). The initial state of

memory (values in hex) is shown below:

char* cp = 0x12
short* sp = 0x0C
unsigned* up = 0x2C

Word
Addr +0 +1 +2 +3 +4 +5 +6 +7

0x00 AC AB 03 01 BA 5E BA 11

0x08 5E 00 AB 0C BE A7 CE FA

0x10 1D B0 99 DE AD 60 BB 40

0x18 14 CD FA 1D D0 41 ED 77

0x20 BA B0 FF 20 80 AA BE EF

(A) What are the values (in hex) stored in each register shown after the following x86

instructions are executed? Remember to use the appropriate bit widths. [6 pt]

Register Value (hex)

%rdi 0x0000 0000 0000 0004

%rsi 0x0000 0000 0000 0000

leaw (%rsi, %rdi), %ax %ax 0x0004

movb 8(%rdi), %bl %bl 0xBE

movswl (,%rdi,8), %ecx %rcx 0x0000 0000 FFFF B0BA

movb instruction pulls byte from memory at address 8+4 = 12 = 0x0C.

movswl instruction pulls 2 bytes from memory starting at addresses 8*4 = 32 = 0x20.

Remember little-endian! Then sign extended to 32 bits, zero out top 32 bits.

(B) It’s a memory scavenger hunt! Complete the C code below to fulfill the behaviors

described in the comments using pointer arithmetic. [6 pt]

v1: Byte 0x60 is at address 0x15. 0x15 – cp = 3.

v2: No dereferencing, just pointer arithmetic (scaled by sizeof(unsigned)=4).

up = 0x2C = 44. To get to 64, need to add 20 (5 by pointer arithmetic).

v3: The correct bytes can be found (in little-endian order) in addresses 0x0E-0x11.

Want (0x0E – sp)/sizeof(short) = 1.

long v1 = (long) *(cp + __3__); // set v1 = 0x60

unsigned* v2 = up + __5__; // set v2 = 64

int v3 = *(int *)(sp + __1__); // set v3 = 0xB01DFACE

Au16 Midterm Q2 Solutions

UW NetID: _ _ _ _ _ _ _

8

Question 5: Fun Stuff [10 pts.]
(A) Assume we are executing code on a machine that uses k-bit addresses, and each addressable memory

location stores b-bytes. What is the total size of the addressable memory space on this machine?

[2 pts.]

(B) In C, who/what determines whether local variables are allocated on the stack or stored in registers?

Circle your answer. [2 pts.]

Programmer Compiler Language (C) Runtime Operating System

(C) Assume procedure P calls procedure Q and P stores a value in register %rbp prior to calling Q. True

or False: P can safely use the register %rbp after Q returns control to P. Circle your answer. [2 pts.]

a. True. %rbp is a callee saved register.

b. False

(D) Assume we are implementing a new CPU that conforms to the x86-64 instruction set architecture

(ISA). Answer the following questions, in one or two English sentences, regarding this new CPU.

[4 pts.]

a. In modern x86-64 CPUs, a new add operation can be executed every cycle. However, for our

new CPU, we realize that we can save power by implementing the add operation such that we

can execute a new add only once every three cycles. Is our new CPU still a valid x86-64

implementation?

Yes. The x86-64 architecture/specification says nothing about how fast any operation

must execute in hardware.

b. In our new CPU implementation, we decide to change the width of register %rsp to be 48-

bits, since most modern x86-64 CPUs only use 48-bit physical addresses, but we still use the

name %rsp. Is our CPU still a valid x86-64 implementation?

No. The x86-64 architecture/specification determines the number and size of registers

available to the programmer/compiler. Changing this in our implementation violates the

architecture.

(2^k) * b

Wi18 Midterm Q5 Solutions

4

Question 3: Computer Architecture Design [8 pts]

Answer the following questions in the boxes provided with a single sentence fragment.

Please try to write as legibly as possible.

(A) Why can’t we upgrade to more registers like we can with memory? [2 pt]

Registers are part of the CPU (and the architecture) and are not modular like RAM.

(B) Why don’t we see new assembly instruction sets as frequently as we see new programming

languages? [2 pt]

Hard to implement/get adopted – need to build new hardware. (by comparison, a new
programming language only needs a new compiler – software)

(C) Name one reason why a program written in a CISC language might run slower than the

same program written in a RISC language and one reason why the reverse might be true:

[4 pt]

CISC slower:
Complicated instructions take longer to
execute (fewer instructions, but each is
slower).

RISC slower:
Need more instructions to do complicated
computations (faster instructions, but
more numerous).

Au16 Midterm Q3 Solutions

5 of 8

3. C and Assembly (11 points total)

You are given the following x86-64 assembly function:

mystery:

movl $0, %edx

movl $0, %eax

.L3:

cmpl %esi, %edx

jge .L1

movslq %edx, %rcx

addl (%rdi,%rcx,4), %eax

addl $1, %edx

jmp .L3

.L1:

rep ret

a) (1 pt) What variable type would %rdi be in the corresponding C program?

int*

b) (1 pt) What variable type would %rsi be in the corresponding C program?

int

c) (7 pts) Fill in the missing C code that is equivalent to the x86-64 assembly above:

______int_____ mystery((answer to a) rdi, (answer to b) rsi) {

___ int _____ eax = ___0 ;________

for (int edx = 0; edx < rsi; edx++) {

eax += rdi[edx];

}

return eax;

}

d) (2 pts) In 1 sentence, describe what this function is doing?

Summing the first rsi elements of the int array starting at rdi

Sp19 Midterm Q3 Solutions

2. Assembly and C (20 points)

Consider the following x86-64 assembly and C code:

<do_something>:

cmp $0x0,%rsi

jle <end>

xor %rax,%rax

sub $0x1,%rsi

<loop>:

lea (%rdi,%rsi, 2),%rdx

add (%rdx),%ax

sub $0x1,%rsi

jns <loop>

<end>:

retq

short do_something(short* a, int len) {

short result = 0;

for (int i = len - 1; i >= 0 ; i--) {

result += a[i] ;

}

return result;

}

(a) Both code segments are implementations of the unknown function do something. Fill in the missing
blanks in both versions. (Hint: %rax and %rdi are used for result and a respectively. %rsi is used
for both len and i)

(b) Briefly describe the value that do something returns and how it is computed. Use only variable names
from the C version in your answer.

do something returns the sum of the shorts pointed to by a. It does so by traversing the array
backwards.

3 of 8

Wi15 Midterm Q2 Solutions

7

4. Stack Discipline (30 points)

The following function recursively computes the greatest common divisor of the integers a,

b:

int gcd(int a, int b) {

if (b == 0) {

return a;

} else {

return gcd(b, a % b);

}

}

Here is the x86_64 assembly for the same function:

4006c6 <gcd>:

4006c6: sub $0x18, %rsp

4006ca: mov %edi, 0x10(%rsp)

4006ce: mov %esi, 0x08(%rsp)

4006d2: cmpl $0x0, %esi

4006d7: jne 4006df <gcd+0x19>

4006d9: mov 0x10(%rsp), %eax

4006dd: jmp 4006f5 <gcd+0x2f>

4006df: mov 0x10(%rsp), %eax

4006e3: cltd

4006e4: idivl 0x08(%rsp)

4006e8: mov 0x08(%rsp), %eax

4006ec: mov %edx, %esi

4006ee: mov %eax, %edi

4006f0: callq 4006c6 <gcd>

4006f5: add $0x18, %rsp

4006f9: retq

Note: cltd is an instruction that sign extends %eax into %edx to form the 64-bit signed

value represented by the concatenation of [%edx | %eax].

Note: idivl <mem> is an instruction divides the 64-bit value [%edx | %eax] by the long

stored at <mem>, storing the quotient in %eax and the remainder in %edx.

Sp14 Midterm Q4 Solutions

 8

A. Suppose we call gcd(144, 64) from another function (i.e. main()), and set a breakpoint

just before the statement “return a”. When the program hits that breakpoint, what will the

stack look like, starting at the top of the stack and going all the way down to the saved

instruction address in main()? Label all return addresses as "ret addr", label local

variables, and leave all unused space blank.

Memory address on stack Value (8 bytes per line)

0x7ffffffffffffad0 Return address back to main
<-%rsp points here at

start of procedure

0x7ffffffffffffac8
1st of 3 local variables on stack

(argument a = 144)

0x7ffffffffffffac0
2nd of 3 local variables on stack

(argument b = 64)

0x7ffffffffffffab8
3rd of 3 local variables on stack

(unused)

0x7ffffffffffffab0
Return address back

to gcd(144, 64)

0x7ffffffffffffaa8
1st of 3 local variables on stack

(argument a = 64)

0x7ffffffffffffaa0
2nd of 3 local variables on stack

(argument b = 16)

0x7ffffffffffffa98
3rd of 3 local variables on stack

(unused)

0x7ffffffffffffa90
Return address back

to gcd(64,16)

0x7ffffffffffffa88
1st of 3 local variables on stack

(argument a = 16)

0x7ffffffffffffa80
2nd of 3 local variables on stack

(argument b = 0)

0x7ffffffffffffa78
3rd of 3 local variables on stack

(unused)
<-%rsp at “return a”

in 3
rd

 recursive call

0x7ffffffffffffa70

 9

B. How many total bytes of local stack space are created in each frame (in decimal)?

 ______32_______ 24 allocated explicitly and 8 for the return address.

C. When the function begins, where are the arguments (a, b) stored?

 They are stored in the registers %rdi and %rsi, respectively.

D. From a memory-usage perspective, why are iterative algorithms generally preferred over

recursive algorithms?

Recursive algorithm continue to grow the stack for the maximum number of recursions

which may be hard to estimate.

Name: _______________________________

4. Stack Discipline (30 pts)

Take a look at the following recursive function written in C:

long sum_asc(long * x, long * y) {
 long sum = 0;
 long v = *x;
 if (v >= *y) {
 sum = sum_asc(x + 1, &v);
 }
 sum += v;
 return sum;
}

Here is the x86-64 disassembly for the same function:

0000000000400536 <sum_asc>:
 0x400536: pushq %rbx
 0x400537: subq $0x10,%rsp
 0x40053b: movq (%rdi),%rbx
 0x40053e: movq %rbx,0x8(%rsp)
 0x400543: movq $0x0,%rax
 0x400548: cmpq (%rsi),%rbx
 0x40054b: jl 40055b <sum_asc+0x25>
 0x40054d: addq $0x8,%rdi
 0x400551: leaq 0x8(%rsp),%rsi
 0x400556: callq 400536 <sum_asc>
 0x40055b: addq %rbx,%rax
 0x40055e: addq $0x10,%rsp
 0x400562: popq %rbx
 0x400563: ret

Suppose that main has initialized some memory in its stack frame and then called sum_asc. We set
a breakpoint at "return sum", which will stop execution right before the first return (from the
deepest point of recursion). That is, we will have executed the popq at 0x400562, but not the ret.

(a) On the next page: Fill in the state of the registers and the contents of the stack (in
memory) when the program hits that breakpoint. For the contents of the stack, give both a
description of the item stored at that location as well as the value. If a location on the stack is not
used, write "unused" in the Description for that address and put "---" for its Value. You may list
the Values in hex (prefixed by 0x) or decimal. Unless preceded by 0x, we will assume decimal. It
is fine to use ff... for sequences of f’s, as we do for some of the initial register values. Add
more rows to the table as needed. (20 pts) 

 of 6 12

Breakpoint

Breakpoint

Sp16 Midterm Q4 Solutions

Name: _______________________________

Additional questions about this problem on the next page.  

Register Original Value Value at Breakpoint

%rsp 0x7ff..070 0x7ff..050

%rdi 0x7ff..080 0x7ff..088

%rsi 0x7ff..078 0x7ff..060

%rbx 2 7

%rax 42 2

Memory Address Description of item Value at Breakpoint

0x7ffffffff090 Initialized in main to: 1 1

0x7ffffffff088 Initialized in main to: 2 2

0x7ffffffff080 Initialized in main to: 7 7

0x7ffffffff078 Initialized in main to: 3 3

0x7ffffffff070 Return address back to main 0x400594

0x7ffffffff068 Original %rbx value 2

0x7ffffffff060 Temporary variable v or %rbx 7

0x7ffffffff058 Unused ---

0x7ffffffff050 Return address back to sum_asc 0x40055b

0x7ffffffff048 Previous value of %rbx (v from first call) 7

0x7ffffffff040 Temporary variable v or %rbx 2

0x7ffffffff038 Unused ---

0x7ffffffff030

0x7ffffffff028

0x7ffffffff020

0x7ffffffff018

0x7ffffffff010

0x7ffffffff008

0x7ffffffff000

 of 7 12

Grading Rubric
Registers (6 pts)
• %rsp: (2) (-1 if only missing last pop)
• %rdi: (1)
• %rsi: (1)
• %rbx: (1)
• %rax: (1)

Stack (14 pts)
Generally, 1 pt for each stack frame where correct
desc/value appears.
• saved %rbx: desc (2), value (2)
• temp "v"/"rbx": desc (2), value (2)
• unused space: (2) second unused optional
• return address desc (2), value (2)

Name: _______________________________

Continue to refer to the sum_asc code from the previous 2 pages.

(b) What is the purpose of this line of assembly code: 0x40055e: addq $0x10,%rsp?
Explain briefly (at a high level) something bad that could happen if we removed it. (5 pts) 
 
This resets the stack pointer to deallocate temporary storage. If we didn’t increment here,
we wouldn’t pop the correct return address or the right value of %rbx. 
 
Note that this would not lead to slow stack overflow due to leaking memory – the first ret
would most likely crash because it got the wrong return address; it is highly unlikely that it
could continue to execute successfully long enough for this leak to be a problem. 
 

(c) Why does this function push %rbx at 0x400536 and pop %rbx at 0x400562? (5 pts) 
 
The register %rbx is a callee-saved register, so if we use it, it is our responsibility to set it
back to what it was before we return from the function. 
 
We gave some points for people recognizing that the two have to be matched for
everything else on the stack to work out (similar to the reasoning for deallocation above),
but if that were the only reason, then we could have just left both of the instructions out. 

 of 8 12

