Name: \qquad
Sp16 Midterm Q1 Solutions

1. Number Representation ${ }_{(20 \mathrm{pts})}$

Consider the binary value 110101_{2} :
(a) Interpreting this value as an unsigned 6-bit integer, what is its value in decimal?
$2^{\wedge} 5+2^{\wedge} 4+2^{\wedge} 2+2^{\wedge} 0=32+16+4+1=53$
(b) If we instead interpret it as a signed (two's complement) 6-bit integer, what would its value be in decimal?
$-2^{\wedge} 5+2^{\wedge} 4+2^{\wedge} 2+2^{\wedge} 0=-32+16+4+1=-11$
(most significant bit becomes "negatively weighted")
(c) Assuming these are all signed two's complement 6-bit integers, compute the result (leaving it in binary is fine) of each of the following additions. For each, indicate if it resulted in overflow.

Note: TMIN = -32					
9	001001	-15	110001	011001	101111
-10	-5	+111011	+001100	+011111	

Result:

$+101100$

7001110

Overflow?

Overflow only occurs for signed addition if the result comes out wrong. The easiest way to determine this is by looking at the signs: if 2 positive values result in a negative result, or 2 negatives result in a positive, then overflow must have occurred.
\qquad

Now assume that our fictional machine with 6-bit integers also has a 6-bit IEEE-like floating point type, with 1 bit for the sign, 3 bits for the exponent (exp) with a bias of 3 , and 2 bits to represent the mantissa (frac), not counting implicit bits.
(d) If we reinterpret the bits of our binary value from above as our 6-bit floating point type, what value, in decimal, do we get?

$$
-1.01_{2}{ }^{*} 2^{\wedge}(4+1-3)=-1.01_{2} * 2^{\wedge} 2=-101_{2}=-5
$$

(e) If we treat 110101_{2} as a signed integer, as we did in (b), and then cast it to a 6-bit floating point value, do we get the correct value in decimal? (That is, can we represent that value in our 6-bit float?) If yes, what is the binary representation? If not, why not? (and in that case you do not need to determine the rounded bit representation)

No, we cannot represent it exactly because there are not enough bits for the mantissa.
To determine this, we have to find out what the mantissa would be once we are in "sign-and-magnitude" style: $110101(-11) \rightarrow 001011$ (+11). In normalized form, this would be: $(-1)^{\wedge} 1$ * 1.011 * $2^{\wedge} 3$, which means frac would need to be 011, which doesn't fit in 2 bits.
(f) Assuming the same rules as standard IEEE floating point, what value (in decimal) does the following represent?

0	0	0	0	0	0
sign	\exp				frac

0.0 (it is a denormalized case)

Sp15 Midterm Q1 Solutions

1 Number Representation(10 points)

Let $\mathrm{x}=0 \mathrm{xE}$ and $\mathrm{y}=0 \mathrm{x} 7$ be integers stored on a machine with a word size of 4 bits. Show your work with the following math operations. The answers-including truncation-should match those given by our hypothetical machine with 4-bit registers.
A. (2pt) What hex value is the result of adding these two numbers?

In hex: $0 \mathrm{xE}+0 \mathrm{x} 7=0 \mathrm{x} 15 \rightarrow 0 \mathrm{x} 5$
In binary converted back to hex: $0 \mathrm{xE}+0 \mathrm{x} 7=1110+0111=10101 \rightarrow 0101=0 \times 5$
Half credit for not truncating to the appropriate value.
B. $(2 \mathrm{pt})$ Interpreting these numbers as unsigned ints, what is the decimal result of adding $x+y$?

In unsigned decimal: $0 x E+0 x 7=14+7=21 \% 16=5$
Half credit for not truncating to the appropriate value or incorrect conversion.
No credit for computing in signed decimal
C. (2pt) Interpreting x and y as two's complement integers, what is the decimal result of computing $x-y$?

In signed decimal: $0 x E-0 x 7=¿-2-7=-9 \rightarrow 7$
Half credit for not truncating to the appropriate value, or incorrect conversion.
No credit for computing in unsigned decimal
D. $(2 \mathrm{pt})$ In one word, what is the phenomenon happening in 1 B ?

Overflow.
E. (2pt) Circle all statements below that are TRUE on a 32-bit architecture: Half point each.

- It is possible to lose precision when converting from an int to a float. True
- It is possible to lose precision when converting from a float to an int. True
- It is possible to lose precision when converting from an int into a double. False
- It is possible to lose precision when converting from a double into an int. True

Wi19 Midterm Q2 Solutions

\qquad abcde

Question 2: Pointers

For this problem we are using a 64-bit x86-64 machine (little endian). The current state of memory (values in hex) is shown below:

Word Addr	$\mathbf{+ 0}$	$\mathbf{+ 1}$	$\mathbf{+ 2}$	$\mathbf{+ 3}$	$\mathbf{+ 4}$	$\mathbf{+ 5}$	$\mathbf{+ 6}$	$\mathbf{+ 7}$
$\mathbf{0 x 0 0}$	BD	28	ED	02	35	72	3 A	AF
$\mathbf{0 x 0 8}$	66	6 F	B 1	E 9	00	FF	5 D	4 D
$\mathbf{0 x 1 0}$	86	06	04	30	64	31	8 C	B 3
$\mathbf{0 x 1 8}$	63	78	1 E	1 C	25	34	EE	93
$\mathbf{0 x 2 0}$	42	6 C	65	67	DE	AD	BE	EF
$\mathbf{0 x 2 8}$	CA	FE	D 0	0 D	1 E	93	FA	CE

(a) (16 points) Write the value in hexadecimal of each expression within the commented lines at their respective state in the execution of the given program. Write UNKNOWN in the blank if the value cannot be determined.

```
int main(int argc, char** argv) {
    char *charP;
    short *shortP;
    int *intP = 0x00;
    long *longP = 0x28;
    // The value of intP is: 0x_00 00 00 00 00 00 00 00
    // *intP
    // &intP
    // longP[-2]
    0x_93 EE 34 25 1C 1E 78 63
    charP = 0x20;
    shortP = (short *) intP;
    intP++;
    longP--;
    // *shortP
    // *intP
    // *((int*) longP)
    // (short*) (((long*) charP) - 2)
    0x_28 BD 
    0x_ AF 3A 72 35
0 x
``` \(\qquad\)
```

        0x_ 10
    }

```

\section*{Au16 Midterm Q2 Solutions}

Question 2: Pointers \& Memory [12 pts]
For this problem we are using a 64 -bit x86-64 machine (little endian). The initial state of memory (values in hex) is shown below:
char* cp \(=0 \times 12\)
short* sp = 0x0C
unsigned* up \(=0 \times 2 C\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Word \\
\(\mathbf{A d d r}\)
\end{tabular} & \(\mathbf{+ 0}\) & \(\mathbf{+ 1}\) & \(\mathbf{+ 2}\) & \(\mathbf{+ 3}\) & \(\mathbf{+ 4}\) & \(\mathbf{+ 5}\) & \(\mathbf{+ 6}\) & \(\mathbf{+ 7}\) \\
\hline \(\mathbf{0 x 0 0}\) & AC & AB & 03 & 01 & BA & 5 E & BA & 11 \\
\hline \(\mathbf{0 x 0 8}\) & 5 E & 00 & AB & 0 C & BE & A 7 & CE & FA \\
\hline \(\mathbf{0 x 1 0}\) & 1 D & B 0 & 99 & DE & AD & 60 & BB & 40 \\
\hline \(\mathbf{0 x 1 8}\) & 14 & CD & FA & 1 D & D 0 & 41 & ED & 77 \\
\hline \(\mathbf{0 x 2 0}\) & BA & B 0 & FF & 20 & 80 & AA & BE & EF \\
\hline
\end{tabular}
(A) What are the values (in hex) stored in each register shown after the following x 86 instructions are executed? Remember to use the appropriate bit widths. [6 pt]
leaw (\%rsi, \%rdi), \%ax
movb 8(\%rdi), \%bl
movswl (,\%rdi,8), \%ecx
\begin{tabular}{|c|c|}
\hline Register & Value (hex) \\
\hline\(\% r d i\) & \(0 x 0000\) 0000 0000 0004 \\
\hline\(\% r s i\) & \(0 x 0000000000000000\) \\
\hline\(\% a x\) & \(0 x 0004\) \\
\hline\(\% b l\) & \(0 x B E\) \\
\hline\(\% r c x\) & \(0 x 0000\) 0000 FFFF B0BA \\
\hline
\end{tabular}
movb instruction pulls byte from memory at address \(8+4=12=0 \times 0 \mathrm{C}\).
movswl instruction pulls 2 bytes from memory starting at addresses \(8^{*} 4=32=0 \times 20\).
Remember little-endian! Then sign extended to 32 bits, zero out top 32 bits.
(B) It's a memory scavenger hunt! Complete the C code below to fulfill the behaviors described in the comments using pointer arithmetic. [6 pt]
```

long v1 = (long) *(cp + __3__); // set v1 = 0x60
unsigned* v2 = up + __5__; // set v2 = 64
int v3 = *(int *)(sp + __1__); // set v3 = 0xB01DFACE

```
v1: Byte 0x60 is at address 0x15. \(0 \times 15-\mathrm{cp}=3\).
v2: No dereferencing, just pointer arithmetic (scaled by sizeof(unsigned)=4).
up \(=0 \times 2 \mathrm{C}=44\). To get to 64 , need to add 20 (5 by pointer arithmetic).
v3: The correct bytes can be found (in little-endian order) in addresses 0x0E-0x11.
Want (0x0E - sp)/sizeof(short) \(=1\).
\(\qquad\)

\section*{Wi18 Midterm Q5 Solutions}

Question 5: Fun Stuff [10 pts.]
(A) Assume we are executing code on a machine that uses k-bit addresses, and each addressable memory location stores b-bytes. What is the total size of the addressable memory space on this machine? [2 pts.]
\[
\left(2^{\wedge} k\right) * b
\]
(B) In C, who/what determines whether local variables are allocated on the stack or stored in registers? Circle your answer. [2 pts.]

Programmer Compiler Language (C) Runtime Operating System
(C) Assume procedure P calls procedure Q and P stores a value in register \%rbp prior to calling Q . True or False: P can safely use the register \%rbp after \(Q\) returns control to \(P\). Circle your answer. [2 pts.]
a. True. \%rbp is a callee saved register.
b. False
(D) Assume we are implementing a new CPU that conforms to the x86-64 instruction set architecture (ISA). Answer the following questions, in one or two English sentences, regarding this new CPU. [4 pts.]
a. In modern x86-64 CPUs, a new add operation can be executed every cycle. However, for our new CPU, we realize that we can save power by implementing the add operation such that we can execute a new add only once every three cycles. Is our new CPU still a valid x86-64 implementation?

Yes. The x86-64 architecture/specification says nothing about how fast any operation must execute in hardware.
b. In our new CPU implementation, we decide to change the width of register \%rsp to be 48bits, since most modern x86-64 CPUs only use 48-bit physical addresses, but we still use the name \%rsp. Is our CPU still a valid x86-64 implementation?

\section*{No. The x86-64 architecture/specification determines the number and size of registers} available to the programmer/compiler. Changing this in our implementation violates the architecture.

\section*{Au16 Midterm Q3 Solutions}

Question 3: Computer Architecture Design [8 pts]
Answer the following questions in the boxes provided with a single sentence fragment.
Please try to write as legibly as possible.
(A) Why can't we upgrade to more registers like we can with memory? [2 pt]

Registers are part of the CPU (and the architecture) and are not modular like RAM.
(B) Why don't we see new assembly instruction sets as frequently as we see new programming languages? [2 pt]

Hard to implement/get adopted - need to build new hardware. (by comparison, a new programming language only needs a new compiler - software)
(C) Name one reason why a program written in a CISC language might run slower than the same program written in a RISC language and one reason why the reverse might be true: [4 pt]
\begin{tabular}{|l|l|}
\hline CISC slower: & RISC slower: \\
Complicated instructions take longer to \\
execute (fewer instructions, but each is \\
slower). & \begin{tabular}{l}
Need more instructions to do complicated \\
computations (faster instructions, but \\
more numerous).
\end{tabular} \\
\hline
\end{tabular}
3. C and Assembly (11 points total)

You are given the following x86-64 assembly function:
mystery:
```

movl \$0, %edx
movl \$0, %eax

```
.L3:
```

cmpl %esi, %edx
jge .L1
movslq %edx, %rcx
addl (%rdi,%rcx,4), %eax
addl \$1, %edx
jmp .L3

```
.L1:
rep ret
a) (1 pt) What variable type would \%rdi be in the corresponding C program?
int*
b) (1 pt) What variable type would \%rsi be in the corresponding C program?
```

int

```
c) (7 pts) Fill in the missing C code that is equivalent to the \(\mathrm{x} 86-64\) assembly above:
```

        int__ mystery( (answer to a) rdi, (answer to b) rsi) \{
    \(\ldots\) int \(\quad\) eax \(=\ldots \quad 0\);
    for (int edx \(=0\); edx < rsi; edx++) \{
        eax += rdi[edx];
    \}
    ```
 return eax;
\}
d) (2 pts) In 1 sentence, describe what this function is doing?

Summing the first rsi elements of the int array starting at rdi

\section*{Wi15 Midterm Q2 Solutions}

\section*{2. Assembly and C (20 points)}

Consider the following x86-64 assembly and C code:
```

<do_something>:
cmp \$0x0,%rsi
jle <end>
xor %rax,%rax
sub \$0x1,%rsi
<loop>:
lea (%rdi,%rsi,__2 ) ,%rdx
add (%rdx),%ax
sub \$0x1,%rsi
jns <loop>
<end>:
retq
short do_something(short* a, int len) {
short result = 0;
for (int i = len - 1; i >= 0 ; i-- ) {
result += a[i];
}
return result;
}

```
(a) Both code segments are implementations of the unknown function do_something. Fill in the missing blanks in both versions. (Hint: \%rax and \%rdi are used for result and a respectively. \%rsi is used for both len and i)
(b) Briefly describe the value that do_something returns and how it is computed. Use only variable names from the C version in your answer.
do_something returns the sum of the shorts pointed to by a. It does so by traversing the array backwards.

\section*{Sp14 Midterm Q4 Solutions}

\section*{4. Stack Discipline (30 points)}

The following function recursively computes the greatest common divisor of the integers a, b:
```

int gcd(int a, int b) {
if (b == 0) {
return a;
} else {
return gcd(b, a % b);
}
}

```

Here is the x 86 _64 assembly for the same function:
```

4006c6 <gcd>:
4006c6: sub \$0x18, %rsp
4006ca: mov %edi, 0x10(%rsp)
4006ce: mov %esi, 0x08(%rsp)
4006d2: cmpl \$0x0, %esi
4006d7: jne 4006df <gcd+0x19>
4006d9: mov 0x10(%rsp), %eax
4006dd: jmp 4006f5 <gcd+0x2f>
4006df: mov 0x10(%rsp), %eax
4006e3: cltd
4006e4: idivl 0x08(%rsp)
4006e8: mov 0x08(%rsp), %eax
4006ec: mov %edx, %esi
4006ee: mov %eax, %edi
4006f0: callq 4006c6 <gcd>
4006f5: add \$0x18, %rsp
4006f9: retq

```

Note: cltd is an instruction that sign extends \%eax into \%edx to form the 64-bit signed value represented by the concatenation of [\%edx | \%eax].

Note: idivl <mem> is an instruction divides the 64-bit value [\%edx | \%eax] by the long stored at \(<\mathrm{mem}>\), storing the quotient in \%eax and the remainder in \%edx.
A. Suppose we call \(\operatorname{gcd}(144,64)\) from another function (i.e. main()), and set a breakpoint just before the statement "return a". When the program hits that breakpoint, what will the stack look like, starting at the top of the stack and going all the way down to the saved instruction address in main()? Label all return addresses as "ret addr", label local variables, and leave all unused space blank.
\begin{tabular}{|c|c|c|}
\hline Memory address on stack & Value (8 bytes per line) & \multirow[b]{2}{*}{<-\%rsp points here at start of procedure} \\
\hline 0x7ffffffffffffad0 & Return address back to main & \\
\hline 0x7ffffffffffffac8 & 1st of 3 local variables on stack (argument \(a=144\)) & \\
\hline 0x7ffffffffffffac0 & 2nd of 3 local variables on stack (argument b = 64) & \\
\hline 0x7ffffffffffffab8 & 3 rd of 3 local variables on stack (unused) & \\
\hline 0x7ffffffffffffab0 & Return address back to \(\operatorname{gcd}(144,64)\) & \\
\hline 0x7ffffffffffffaa8 & 1st of 3 local variables on stack (argument \(a=64\)) & \\
\hline 0x7ffffffffffffaa0 & 2nd of 3 local variables on stack (argument \(b=16\)) & \\
\hline 0x7ffffffffffffa98 & 3 rd of 3 local variables on stack (unused) & \\
\hline 0x7ffffffffffffa90 & Return address back to \(\operatorname{gcd}(64,16)\) & \\
\hline 0x7ffffffffffffa88 & 1st of 3 local variables on stack (argument \(a=16\)) & \\
\hline 0x7ffffffffffffa80 & 2nd of 3 local variables on stack (argument \(b=0\)) & \\
\hline 0x7ffffffffffffa78 & 3rd of 3 local variables on stack (unused) & <-\%rsp at "return a" in \(3^{r d}\) recursive call \\
\hline 0x7ffffffffffffa70 & & \\
\hline
\end{tabular}
B. How many total bytes of local stack space are created in each frame (in decimal)?
\(\qquad\) 24 allocated explicitly and 8 for the return address.
C. When the function begins, where are the arguments \((a, b)\) stored?

They are stored in the registers \%rdi and \%rsi, respectively.
D. From a memory-usage perspective, why are iterative algorithms generally preferred over recursive algorithms?

Recursive algorithm continue to grow the stack for the maximum number of recursions which may be hard to estimate.

Name: \(\qquad\)
Sp16 Midterm Q4 Solutions

\section*{4. Stack Discipline (30 pts)}

Take a look at the following recursive function written in C:
```

long sum_asc(long * x, long * y) {
long sum = 0;
long v = *x;
if (v >= *y) {
sum = sum_asc(x + 1, \&v);
}
sum += v;
return sum;
}

```


Here is the x86-64 disassembly for the same function:

Suppose that main has initialized some memory in its stack frame and then called sum_asc. We set a breakpoint at "return sum", which will stop execution right before the first return (from the deepest point of recursion). That is, we will have executed the popq at 0 x 400562 , but not the ret.
(a) On the next page: Fill in the state of the registers and the contents of the stack (in memory) when the program hits that breakpoint. For the contents of the stack, give both a description of the item stored at that location as well as the value. If a location on the stack is not used, write "unused" in the Description for that address and put "---" for its Value. You may list the Values in hex (prefixed by 0 x) or decimal. Unless preceded by 0 x , we will assume decimal. It is fine to use ff . . . for sequences of f 's, as we do for some of the initial register values. Add more rows to the table as needed. (20 pts)

Name: \(\qquad\)
\begin{tabular}{|c|c|c|}
\hline Register & Original Value & Value at Breakpoint \\
\hline \%rsp & \(0 x 7 \mathrm{ff} \ldots 070\) & \(0 x 7 \mathrm{ff} \ldots 050\) \\
\hline \%rdi & \(0 x 7 \mathrm{ff} \ldots 080\) & \(0 x 7 \mathrm{ff} \ldots 088\) \\
\hline \%rsi & \(0 x 7 \mathrm{ff} \ldots 078\) & \(0 x 7 \mathrm{ff} \ldots 060\) \\
\hline \%rbx & 2 & 7 \\
\hline \%rax & 42 & 2 \\
\hline
\end{tabular}

\(\qquad\)

Continue to refer to the sum_asc code from the previous 2 pages.
(b) What is the purpose of this line of assembly code: 0 x 40055 e : addq \(\$ 0 \mathrm{x} 10, \% \mathrm{rsp}\) ? Explain briefly (at a high level) something bad that could happen if we removed it. (5 pts)

This resets the stack pointer to deallocate temporary storage. If we didn't increment here, we wouldn't pop the correct return address or the right value of \%rbx.

Note that this would not lead to slow stack overflow due to leaking memory - the first ret would most likely crash because it got the wrong return address; it is highly unlikely that it could continue to execute successfully long enough for this leak to be a problem.
(c) Why does this function push \%rbx at 0x400536 and pop \%rbx at 0x400562? (5 pts)

The register \%rbx is a callee-saved register, so if we use it, it is our responsibility to set it back to what it was before we return from the function.

We gave some points for people recognizing that the two have to be matched for everything else on the stack to work out (similar to the reasoning for deallocation above), but if that were the only reason, then we could have just left both of the instructions out.```

