
CSE 351 Section 4 – x86-64 Assembly
Hi there! Welcome back to section, we’re happy that you’re here

x86-64 Assembly Language

Assembly language is a human-readable representation of machine code instructions (generally a one-to-one
correspondence). Assembly is machine-specific because the computer architecture and hardware are designed to
execute a particular machine code instruction set.

x86-64 is the primary 64-bit instruction set architecture (ISA) used by modern personal computers. It was
developed by Intel and AMD and its 32-bit predecessor is called IA32. x86-64 is designed for complex instruction
set computing (CISC), generally meaning it contains a larger set of more versatile and more complex instructions.

For this course, we will utilize only a small subset of x86-64’s instruction set and omit floating point instructions.

x86-64 Instructions

The subset of x86-64 instructions that we will use in this course take either one or two operands, usually in the
form: instruction operand1, operand2. There are three options for operands:

 Immediate: constant integer data (e.g. $0x400, $-533) or an address/label (e.g. Loop, main)

 Register: use the data stored in one of the 16 general purpose registers or subsets (e.g. %rax, %edi)

 Memory: use the data at the memory address specified by the addressing mode D(Rb,Ri,S)

The operation determines the effect of the operands on the processor state and has a suffix (“b” for byte, “w” for
word, “l” for long, “q” for quad word) that determines the bit width of the operation. Sometimes the operation
size can be inferred from the operands, so the suffix is omitted for brevity.

Control Flow and Condition Codes

Internally, condition codes (Carry, Zero, Sign, Overflow) are set based on the result of the previous operation. The
j* and set* families of instructions use the values of these “flags” to determine their effects. See the table
provided on your reference sheet for equivalent conditionals.

An indirect jump is specified by adding an asterisk (*) in front of a memory operand and causes your program
counter to load the address stored at the computed address. (e.g. jmp *%rax) This is useful for switch case
statements

Procedure Basics

The instructions push, pop, call, and ret move the stack pointer (%rsp) automatically.

%rax is used for the return value and the first six arguments go in %rdi, %rsi, %rdx, %rcx, %r8, %r9
 (“Diane’s Silk Dress Cost $89”).

x86 instructions English equivalent

movq $351, %rax Move the number 351 into 8-byte (quad) register “rax”

addq %rdi, %rsi

movq (%rdi), %r8

leaq (%rax,%rax,8), %rax

Exercises:

1. [CSE351 Au14 Midterm] Symbolically, what does the following code return?

movl (%rdi), %eax # %rdi -> x

leal (%eax,%eax,2), %eax # %rax -> r

addl %eax, %eax

andl %esi, %eax # %rsi -> y

subl %esi, %eax

ret

2. [CSE351 Au15 Midterm] Convert the following C function into x86-64 assembly code. You are not being
judged on the efficiency of your code – just the correctness.

long happy(long *x, long y, long z) {

 if (y > z)

 return z + y;

 else

 return *x;

}

3. Write an equivalent C function for the following x86-64 code:

mystery:

 testl %edx, %edx

 js .L3

 cmpl %esi, %edx

 jge .L3

 movslq %edx, %rdx

 movl (%rdi,%rdx,4), %eax

 ret

.L3:

 movl $0, %eax

 ret

4. [CSE351 Wi17 Midterm] Consider the following x86-64, (partially blank) C code, and memory diagram.
Addresses and values are 64-bit. Fill in the C code based on the given assembly.

int foo(long* p) {

 int result = ____;

 while (________) {

 p = ___________;

 _____ = __________;

 }

 return result;

}

foo:

 movl $0, %eax

L1:

 testq %rdi, %rdi

 je L2

 movq (%rdi), %rdi

 addl $1, %eax

 jmp L1

L2:

 ret

Part 2: Follow the execution of foo in assembly, where 0x1000 is passed in to %rdi

Write the values of %rdi and %eax in the columns. If the value doesn’t change, you can leave it blank

Instruction %rdi (hex) %eax (decimal)

movl 0x1000 0

testq

je Address Value

 0x1000 0x1030

 0x1008 0x1020

 0x1010 0x1000

 0x1018 0x0000

 0x1020 0x1030

 0x1028 0x1008

 0x1030 0x0000

 0x1038 0x1038

 0x1040 0x1048

 0x1048 0x1040

5. Log on to Gradescope and start the “GDB Tutorial (optional)” assignment.
This includes the basic workflow on how to use GDB, and should prove very useful for Lab 2 and beyond
(Q4 even includes a walkthrough of Lab 2 Phase 0).

