CSE 351 Section 3 – Integers and Floating Point

Welcome back to section, we're happy that you're here 😊

Signed Integers with Two's Complement

Two's complement is the standard for representing signed integers:

- The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)
- Binary addition is performed the same way for signed and unsigned
- The bit representation for the negative value (additive inverse) of a Two's Complement number can be found by:
 flipping all the bits and adding 1 (i.e., where a 1)

<u>flipping all the bits and adding 1</u> (i.e. -x = -x + 1).

The "number wheel" showing the relationship between 4-bit numerals and their Two's Complement interpretations is shown on the right:

- The largest number is 7 whereas the smallest number is -8
- There is a nice symmetry between numbers and their negative counterparts except for -8

Exercises: (assume 8-bit integers)

Unsigned:

1) What is the **largest integer**? The **largest integer** + 1?

2)	How do you represent (if possible) the following numbers: 39 , -39 , 127 ?	
----	---	--

Unsigned:	<u>Two's Complement</u> :
39:	39:
-39:	-39:
127:	127:

Two's Complement:

3) Compute the following sums in binary using your Two's Complement answers from above. Answer in hex.

a. 39 -> 0b +(-39) -> 0b	b. 127 -> 0b
^{0x} <- ^{0b}	^{0x} <- ^{0b}
c. 39 -> 0b +(-127) -> 0b	d. 127 -> 0b + 39 -> 0b
0x _ <- 0b	⁰ x <- ⁰ b x ⁰

4) Interpret each of your answers above and indicate whether-or-not overflow has occurred.

a. 39+(-39)	b. 127+(-39)
Unsigned:	Unsigned:
Two's Complement:	Two's Complement:
c. 39-127	d. 127+39
Unsigned:	Unsigned:
Two's Complement:	Two's Complement:

Goals of Floating Point

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high amount of precision, and [3] real arithmetic results (*e.g.* \propto and NaN).

IEEE 754 Floating Point Standard

The <u>value</u> of a real number can be represented in scientific binary notation as:

$Value = (-1)^{sign} \times Mantissa_2 \times 2^{Exponent} = (-1)^{S} \times 1.M_2 \times 2^{E\text{-bias}}$

The <u>binary representation</u> for floating point values uses three fields:

- **S**: encodes the *sign* of the number (0 for positive, 1 for negative)
- **E**: encodes the *exponent* in **biased notation** with a bias of 2^{w-1}-1
- M: encodes the *mantissa* (or *significand*, or *fraction*) stores the fractional portion, but does not include the implicit leading 1.

_				_
	S	Е	М	
float	1 bit	8 bits	23 bits	
double	1 bit	11 bits	52 bits	

How a float is interpreted depends on the values in the exponent and mantissa fields:

Е	М	Meaning
0	anything	denormalized number (denorm)
1-254	anything	normalized number
255	zero	infinity (∞)
255	nonzero	not-a-number (NaN)

Exercises:

Bias Notation

- 5) Suppose that instead of 8 bits, E was only designated 5 bits. What is the bias in this case?
- 6) Compare these two representations of E for the following values:

Exponent	E (5 bits)	E (8 bits)										
1												
0												
-1												

Notice any patterns?

Floating Point / Decimal Conversions

7) Convert the decimal number 1.25 into single precision floating point representation:

8) Convert the decimal number -7.375 into single precision floating point representation:

9) Add the previous two floats from exercise 7 and 8 together.Convert that number into single precision floating point representation:

- 10) Let's say that we want to represent the number $3145728.125(2^{21} + 2^{20} + 2^{-3})$
 - a. Convert this number to into single precision floating point representation:

1																4
																1

- b. How does this number highlight a limitation of floating point representation?
- 11) What are the decimal values of the following floats?

Floating Point Mathematical Properties

- Not <u>associative</u>: $(2 + 2^{50}) 2^{50} \neq 2 + (2^{50} 2^{50})$
- Not <u>distributive</u>: $100 \times (0.1 + 0.2) \neq 100 \times 0.1 + 100 \times 0.2$
- Not <u>cumulative</u>: $2^{25} + 1 + 1 + 1 + 1 \neq 2^{25} + 4$

Exercises:

12) Based on floating point representation, explain why each of the three statements above occurs.

13) If x and y are variable type float, give two *different* reasons why (x+2*y) - y = x+y might evaluate to false.

