Section 2 Extra Problems Solutions

Pointers
1. Determine the output of the following program.

#include <stdio.h>

int main(int argc, char **argv) {
int *arr[4]; // assume arr stores the address 0x10
int x = 4; // assume &x = 0x40

int y = 8; // assmue &y = 0x44

long addr = (long) é&arrl[2];
arr[2] = &x;
arr[3] = arr[2];

(*arr[3]) ++;
arr[3]++;

%$1x\n", addr);
\n", *arr[2]);
\n", *arr[3]);

printf ("addr
printf ("*arr[2]
printf ("*arr[3]

$d\n
%$d\n

Output:

addr = 0x20
*arr[2] = 5
*arr[3] = 8

2. Write a function reverse that takes a string starting at a given char* and reverses the characters in the
string. Hint: use a temporary char * to help you traverse the string, and remember that strings end

with the null character *\0’.
void reverse (char *s) {
char *curr = s;

if (!(*curr)) return; // handle the empty string case

while (*(curr + 1)) curr++; // loop to one before the terminator

while (curr > s) { // walk pointers in, swapping as you go

char tmp = *s;

*s = *curr;
*curr = tmp;
s++;

curr--;

Bitshifting

1. Determine the output of the following program.
#include <stdio.h>

int main(int argc, char **argv) {
int x = -1;
short yv = -1;
x = x ~ O0xFFFF;
y =y ~ OxFFFF;

printf ("x = %d\n", x);
printf("y = $hd\n", y); // %hd specifies a short
printf (" (short)x = $hd\n", (short)x);

}

Output:

X = -66536

y=20

(short)x = 0

2. The following program includes a buggy method toggle nth bit that doesn’t work as it is intended
to. First determine what is actually printed by main vs. what is intended to be printed. Then try to
figure out the bug, and write a correct (and hopefully simpler) version of the method.

#include <stdio.h>

// Toggles the nth bit of the given
// val. Returns the toggled val
// Can assume 0 <= n <= 31
int toggle nth bit(int val, int n) {
int one farthest left = 0x80000000;
int mask = one farthest left >> (31 - n);

A

return val mask;

int main(int argc, char **argv) {

int x = -1;

printf ("before toggle: %$x\n", x);
printf ("after toggle: %x\n", toggle nth bit(x, 0));

Before the toggle will print ffffffff as intended, but after the toggle will
print 0 (instead of fffffffe). The bug is that the shift to calculate the
mask does an arithmetic shift since one_farthest left is signed. A much
better solution is to return val ~ (1 << n).

