WA UNIVERSITY of WASHINGTON

Java and C
CSE 351 Winter 2020

Instructor:
Ruth Anderson

Jonathan Chen
Josie Lee

L27: Javaand C

Teaching Assistants:

Eddy (Tianyi) Zhou

Justin Johnson
Jeffery Tian

CSE351, Winter 2020

Porter Jones
Callum Walker

SERIOUSLY? THIS
THING RUNS JALA?
ITS SINGLE-PUORFSE
HARDWARE!

o\
d

T BET THEY ACTUALLY HIRED SONEONE
TO SPEND SIx MONTHS FORTING THIS
JvM S0 THEY COULD WRITE THEIR 20
UNES OF CODE IN A FAMILIAR SETTING.

[|

WELL, YOU KNOW WHAT THEY SAY-—
WHEN ALL YOU HAVE IS A PAIR OF
BOLT CUTTERS AND A BOTTLE oF VoDKA,
EVERYTHING LOOKS LIKE THE LOCK ON
THE DOOR OF WOLF BLITZERS BOATHOUSE.

o
p

IMGLAD
YoU HAD A
NICE NIGHT.

https://xkcd.com/801/

WA UNIVERSITY of WASHINGTON CSE351, Winter 2020

Administrivia

+» hw22 due Wednesday (3/11) — Do EARLY, will help
with Lab 5

%+ hw23 on Java and C — coming soon!

+» Lab 5 (on Mem Alloc) due Monday 3/16
" Light style grading

+» Course evaluations now open
= Please fill these out!
= Separate ones for Lecture and Section

WA UNIVERSITY of WASHINGTON

L27: Javaand C CSE351, Winter 2020

Roadmap

C: Java:

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;

Car c = new Car(Q);
c.setMiles(100);
c.setGals(17);

float mpg = get_mpg(c);

float mpg =

free(c); C.getMPG();
Assembly get_mpg:
. pushqg %rbp
language' movq %rsp, %rbp
popq %rbp Java vs. C
ret i$
Machine 0111010000011000
de: 100011010000010000000010
code. 1000100111000010
110000011111101000011111
Computer

system:

WA UNIVERSITY of WASHINGTON L27: Javaand C CSES351, Winter 2020

Java vs. C

+» Reconnecting to Java (hello CSE143!)

" But now you know a lot more about what really happens
when we execute programs

+» We’'ve learned about the following items in C; now
we’ll see what they look like for Java:

Representation of data

Pointers / references

Casting

Function / method calls including dynamic dispatch

WA UNIVERSITY of WASHINGTON

L27: Javaand C

CSE351, Winter 2020

Worlds Colliding

+» CSE351 has given you a “really different feeling”
about what computers do and how programs execute

+» We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”
" |t's not —it’s just a higher-level of abstraction

® Connect these levels vi%ow—one-couId—implement-Java in
351 terms

WA UNIVERSITY of WASHINGTON L27: Javaand C

CSE351, Winter 2020

Meta-point to this lecture

+» None of the data representations we are going to talk
about are quaranteed by Java

+ In fact, the language simply provides an abstraction
(Java language specification)

= Tells us how code should behave for different language

constructs, but we can't easily tell how things are really
represented

" Butitis important to understand an implementation of the
lower levels — useful in thinking about your program

WA UNIVERSITY of WASHINGTON L27: Javaand C

CSE351, Winter 2020

Data in Java

+ Integers, floats, doubles, pointers —same as C

= “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

= Java’s portability-guarantee fixes the sizes of all types
- Example: Intis 4 bytes in Java regardless of machine

"= No unsigned types to avoid conversion pitfalls

- Added some useful methods in Java 8 (also use bigger signed types)
» null is typically represented as O but “you can’t tell”
% Much more interesting:
" Arrays
" Characters and strings
" Objects

WA UNIVERSITY of WASHINGTON

int array[5];

Data in Java: Arrays

» Every element initialized to O or nul I

» Length specified in immutable field at start of array (1Nt -4
bytes)
= array. length returns value of this field

- Since it has this info, what can it do?

21?7

17

20
—

array = new int@;

00

L27: Javaand C CSE351, Winter 2020

— oevbage /

GUavo v\’kecd Zeros

WA UNIVERSITY of WASHINGTON L27: Javaand C CSES351, Winter 2020

Data in Java: Arrays

Every element initialized to O or nul |

Length specified in immutable field at start of array (1INt —4
bytes)

= array. length returns value of this field

Every access triggers a bounds-check

" Codeis added to ensure the index is within bounds

= Exception if out-of-bounds

C: int array[5]; To speed up bounds-checking:
N P P PR B e Length field is likely in cache
B NN S N e Compiler may store length field
0 4(@“& s 20 in register for loops
Java: —.int[] array =ew int[5]; Compiler may prove that some
(Dq%:\eg\: 5 [ooloo 60 ooloo checks are redundant

O 4 20 24

WA UNIVERSITY of WASHINGTON L27: Javaand C

Data in Java: Characters & Strings

- Two-byte Unicode instead of ASCII

= Represents most of the world’s alphabets
» String not bounded by a "\O" (null character)
= Bounded by hidden length field at beginning of string

- All String objects read-only (vs. StringBuffer)

12348 ¢
Example: the string “CSE351”

C: 43[53]45(33[35]31[\0] =g
(ASCII) =
0 1" _ 4 7
Y
Java: 6 43]|00(53|00(45|00|33|00(35(00(|31]|00
(Unicode) N —— ——73g 16

g 6oy Sizge heade 28 per chav

CSE351, Winter 2020

[¢B

10

CSE351, Winter 2020

WA UNIVERSITY of WASHINGTON L27: Javaand C

Data in Java: Objects

+ Data structures (objects) are always stored by reference, never

stored “inline”
" |nclude complex data types (arrays, other objects, etc.) using references

C: Java:
struct rec { class Rec {
int i; int 1;
int af3]; int[] a = new int[3];
struct rec *p; Rec p;
}; -
= a[] stored “inline” as part of ¥
struct = astored by reference in object
g pomter
\23 G(ray -—
S~ / ifa ¢ P é

- | I
ila’ | D ¢ 0 4 [12 20 B
0 4 16 24 \ 3 oot

O 4 16 1

WA UNIVERSITY of WASHINGTON L27: Javaand C

CSE351, Winter 2020

Pointer/reference fields and variables

In C, we have “=>" and “.” for field selection depending on
whether we have a pointer to a struct or a struct
= (*r).a issocommon it becomes r->a

In Java, all non-primitive variables are references to objects
= We always use I .a notation

= But really follow reference to r with offset to a, just like r-=>ain C
"= So no Java field needs more than 8 bytes y

C: « Java:

el €

€
struct rec *r = malloc(...); kar = new Rec();
struct rec r2; °r2 = new Rec();

r->i = val; r.i = val;
r->a[2] = val; r.a[2] = val;
r@p = &r2; rop = r2;

-

//‘

12

WA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Winter 2020

Pointers/References

- Pointers in C can point to any memory address
- References in Java can only point to [the starts of] objects

= Can only be dereferenced to access a field or element of that object

C: Java:
struct rec { class Rec {
int 1; int 1;
int a[3]; int[] a = new Int[3];
struct rec *p; Rec p;
}; +
struct rec* r = malloc(.); Rec r = new Rec();
some_ftn(&(r->al[l1])); // ptr some fn(r.a, 1); // ref, i1ndex

nt dicect!
r r-\ - ﬁ (6+k;s ane\:; Yoss
/ ifa ¢ [)‘ “Q*Z/

| D ¢ 0 4 [12 \,20
0 4 16 24 3 [int[3]

O 4 16 13

Q

L27: Java and C CSE351, Winter 2020

WA UNIVERSITY of WASHINGTON

Casting in C (example from Lab 5)

» Can cast any pointer into any other pointer

0‘0

" Changes dereference and arithmetic behavior

struct BlockiInfo {

size_t sizeAndTags;
struct BlockInfo* next;
struct BlockInfo* prev; [Chﬁbhﬁochar*to}

¥ B do unscaled addition
typedef struct BlockInfo BlocklInfo;

int x;
BlockInfo *b;
BlockInfo *newBlock;
newBlock = (BlocklInfo *ff?/z;;;;’:; b +
S|INn|p s|IN|p

O 8 16 24 X 14

BlockInfo * to use

Cast back into
as BlockInfo struct

N

);
Move Io\/ X LY’PS

>

WA UNIVERSITY of WASHINGTON

L27: Javaand C CSE351, Winter 2020

Type-safe casting in Java

= Can only cast compatible object references

= Based on class hierarchy

&l

class Boat extends Vehicle {
int propellers;

SVWfJM) }\ .
Elezs ULjee 4 CI?SS YEEEE!? { ;];;:&%ar extends Vehicle {
.- — 1INt passengers; int Mels;
} _ } }
; | ~cfual objeds
_ réelerences. -

Vehicle = hew Vehicle()\; 7/ super class of Boat and Car
Boat 1= Boat(); // |--> sibling
Car 1| = Car(Q); // |--> sibling
Vehicle v1\= new Car();
Vehicle v2 |= v1;
Car c2 |= new Boat();
Car c3 |= new Vehicle();
Boat b2 [= (Boat) v;
Car c4/ = (Car) v2;
Car c3 = (Car) bi;

15

WA UNIVERSITY of WASHINGTON L27: Javaand C CSES351, Winter 2020

Type-safe casting in Java

+ Can only cast compatible object references

= Based on class hierarchy class Boat extends Vehicle {
int propellers;
}
2 R (e CI?SS VENIE G of class Car extends Vehicle {
—> Int passengers; - -
int wheels;
defines -He} wiev's wctua) dojn-(}l +hat }
inte-face wilk doject yor_intecact with

%

Vehicle v = new Vehicle(); // super class of Boat and Car
Boat bl = new Boat(); // |--> sibling

Car cl = new Car(); // |--> sibling

Vehicle vl = new Car(); «—— Everything needed for Vehicle also in Car

Vehicle v2 = vl1; «—— vlisdeclared as type Vehicle

Car c2 = new Boat(); «——— X Compiler error: Incompatible type — elements in
Car that are not in Boat (siblings)

Car c3 = new Vehicle(); «— X Compiler error: Wrong direction — elements Car
notin Vehicle (wheels)

Boat b2 = (Boat) v; «—— X Runtime error: Vehicle does not contain all
elements in Boat (propellers)

Car c4 = (Car) vz2; +«—— / V2 refers to a Car at runtime

Car c5 = (Car) bi; +<— X Compiler error: Unconvertable types — b1 is

declared as type Boat 16

WA UNIVERSITY of WASHINGTON

L27: Javaand C

Java Object Definitions

CSE351, Winter 2020

class Point {

boolean samePlace(Point p) {
return (x p-x) && (y == p.y);
}

}

—

double Xx; ,
double y; } <€ fields
Point() { < constructor
X = 0;
y = 0;
}

— method(s)

—

Point p new Point();<

creation

o SamePR=(9g)
o= r

17

WA UNIVERSITY of WASHINGTON L27: Javaand C CSES351, Winter 2020

Java Objects and Method Dispatch
@ Point obje \/ \

header F@ﬁ/ >< y

vtable for class Point: p o—
s —
x code for Point() code for samePlace()
Point object
header |vtable "ptr X y

2 ﬁrtua/ me@ table (vtable)

= Like a jump table for instance (“virtual”) methods plus other class info
" One table per class

» Object header : GC info, hashing info, lock info, etc.
= Why no size?

18

WA UNIVERSITY of WASHINGTON

Java Constructors

L27: Javaand C

<+ When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

Java:

C pseudo-translation: _

Zero od daJeE‘ da

Point p = Point();

Point* p = calloéfl,sizeof(Point));
p->header = ..
p->vtable = &Point_vtable;
p->vtable[O0](p);

ran the
congtructor

-5 /] set wp hc?ier (somehon)

Point object

P —

vtable for class Point:

CSE351, Winter 2020

code for Point()

code for samePlace()

19

WA UNIVERSITY of WASHINGTON

L27: Javaand C

CSE351, Winter 2020

Java Methods

+ Static methods are just like functions

+ Instance methods:
® Can referto

Y'e“:erence + Par'h(u\lar ingtance EF C\UJ
= Have an implicit first parameter for this; and
= Can be overridden in subclasses

oS

» The code to run when calling an instance method is chosen at
runtime by lookup in the vtable Gee tispatch)

Java:
p.samePlace(q);

C pseudo-translation:
> p—>vtable[1](p, d);

L ;MPL\L;\' 0‘,‘)’ id
Point object

Seyrv-reverence

header |{table ptr X

A 7]
N

vtable for class Point:

,.

K} code for Point()

-%ode for samePlace()

20

WA UNIVERSITY of WASHINGTON L27: Javaand C

Subclassing

class ThreeDPoint extends Point {
double z; =
boolean samePlace(Point p2) {

return false;

+

void sayHI() {
System-out-println("helIo");j}

+

CSE351, Winter 2020

override Me'H\O&

hew méﬂ\oa\

}

+ Where does “zZ” go? At end of fields of PoiInt

= Point fields are always in the same place, so Point code can run on
ThreeDPoint objects without modification

+» Where does pointer to code for two new methods go?
= No constructor, so use default Poilnt constructor

= To override “samePlace”, use same vtable position
= Add new pointer at end of vtable for new method “sayH1”

21

WA UNIVERSITY of WASHINGTON L27: Javaand C CSES351, Winter 2020

Subclassing

class ThreeDPoint extends Point {
double z;
boolean samePlace(Point p2) {
return false;
ks
void sayH1() {
System.out.printin("'hello™);

+
+
Z tacked on at end
ThreeDPoint object ‘
header | vtable ptr X y z

- heo
sayH1 tackfd on at end Code for
4 3 sayH1
¢

vtable for ThreeDPoint: | constructor ef samePlace ¢| sayHi

(not Point) / Arfferet Qw

Old code for New code for
constructor samePlace -

WA UNIVERSITY of WASHINGTON L27: Javaand C CSES351, Winter 2020

Pt B
Dynamic Dispatch

Point object

> | header

- w0, 5)
Poirnt vtable: @
code for Point’s samePlace()
2?7 \\>
§ 0= new The Doin?(); code for Point()

T‘ p = nev
ThreeDPoint object

>[header | vaable per p| x / y z
_—>»| code for sayHi()

- N
ThreeDPoint vtable: / Cx — |
> code for 3DPoint’s samePlace()

ﬁ"er‘?/\’l' ode exCL\fC"’PA d’ ruv\"\lme

Java: bm A Jeject P ponds ? pseudo-translation:
Point p —\???,l // works regardless of what p i1s

return p.samePlace(q); return p->vtable[1](p, 9);

23

WA UNIVERSITY of WASHINGTON CSE351, Winter 2020

Ta-da!

% In CSE143, it may have seemed “magic” that an
inherited method could call an overridden method

" You were tested on this endlessly

+» The “trick” in the implementation is this part:

p->vtable[1](p,q)

" |n the body of the pointed-to code, any calls to (other)
methods of this will use p->vtable

= Dispatch determined by p, not the class that defined a
method

24

WA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Winter 2020

Practice Question

+» Assume: 64-bit pointers, Java objects aligned to 8 B with 8-B header
+~ What are the sizes of the things being pointed at by ptr_c (1 B)

1>
and ptr_l : (L}% B) ne_expl: iert me’“ﬂo(}f bu"'
struct c { ,\E“ class jobj { AN inher s ConsStrdor §
int i; L‘ Int I medhogs ‘Fruw\ O}D)ed' c\asj
char s[3]; 1 ’z m‘}erwl‘rroj String s = "hi”
int a[3]; 4 J int[] a = new int[3];
struct c *p; 2 jJobj p;
}; o ks
struct c* ptr_c; Kmax= & Bﬂhn“l -(mj jobj ptr_j = new jobjQ;
. s/ 08B
lo’\r‘_ C: l 1 _lmm /J a(v) ’ G[I] | 2] }T////r P l — '.viemal/et‘,*tma‘
0 o 7 ¥ 24 32 4 5
- null
prr-y Iheader [viwe | 1| 7)41 s | o [P ‘
0) < I 6 4 32 L
pddivey cold be mmm
inhy Cox 29

ntern e external dependi
o fmoJ\(l,TV\ ?v:ple,mgenfo:i\?o“ >l/\‘}/1:_/z/u 25

WA UNIVERSITY of WASHINGTON L27: Javaand C CSES351, Winter 2020

Implementing Programming Languages

Many choices in how to implement programming models
We've talked about compilation, can also interpret
Interpreting languages has a long history

= Lisp, an early programming language, was interpreted

Interpreters are still in common use:
= Python, Javascript, Ruby, Matlab, PHP, Perl, ...

7——% C " Interpreter ~
<;Your source code \iiplementatiob
N el i
~Che ¢ 7y, :P ___k
J

— +Y Al S)k\% /
Your source code
T X% o
Binary executable nterpreter binary
[Hardware _‘ [Hardware _‘ 26

WA UNIVERSITY of WASHINGTON L27: Javaand C CSES351, Winter 2020

An Interpreter is a Program

» Execute (something close to) the source code directly
» Simpler/no compiler — less translation

+ More transparent to debug — less translation

- Easier to run on different architectures — runs in a simulated
environment that exists only inside the interpreter process

= Just port the interpreter (program), not the program-being-interpreted

ower and harder to optimize Interpreter
implementation

Your source code <> \ /
Z

S

nterpreter binary

27

WA UNIVERSITY of WASHINGTON L27: Javaand C CSES351, Winter 2020

Interpreter vs. Compiler

An aspect of a language implementation
= A language can have multiple implementations
= Some might be compilers and other interpreters

« “Compiled languages” vs. “Interpreted languages” a misuse of
terminology
= But very common to hear this
= And has some validation in the real world (e.g. JavaScript vs. C)

+ Also, as about to see, modern language implementations are
often a mix of the two. E.g. :
= Compiling to a bytecode language, then interpreting
= Doing just-in-time compilation of parts to assembly for performance

28

WA UNIVERSITY of WASHINGTON

L27: Javaand C

CSE351, Winter 2020

“ ” Note: The JVM is different than the CSE VM running
The JVM []

on VMWare. Yet another use of the word “virtual”!

% Java programs are usually run by a
Java virtual machine (JVM)

= JVMs interpret an intermediate language called Java
bytecode

" Many JVMs compile bytecode to native machine code
« Just-in-time (JIT) compilation

« http://en.wikipedia.org/wiki/Just-in-time compilation

= Java is sometimes compiled ahead of time (AOT) like C

29

WA UNIVERSITY of WASHINGTON L27: Javaand C CSES351, Winter 2020

Compiling and Running Java

1. Save your Java code in a . Java file

2. To run the Java compiler:
= javac Foo.java

= The Java compiler converts Java into Java bytecodes
« Storedina .class file

3. To execute the program stored in the bytecodes, Java
bytecodes can be interpreted by a program (an interpreter)
" ForJava, this interpreter is called the Java Virtual Machine (the JVM)

" To run the virtual machine:

o iava Foo

" This Loads the contents of FOO.class and interprets the bytecodes

30

WA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Winter 2020

Virtual Machine Model
€ j \} 3\/4 Q*j |

[igh-Level Language Progfam] C
Bytecode compile \ Ahead-of-time
(e.g. Javac Foo.java) compiler
— \\,/ CC
_Cimﬁﬂe_tlme_ | Virtual Machine Language j

run time (e.g. Java bytecodes)]
I
Virtual machine (interpreter)-—J JIT |
(e.g. java Foo) />‘ compiler |
I

A 4

Native Machine Language
(e.g. x86, ARM, MIPS)

Tif%f%

31

WA UNIVERSITY of WASHINGTON

Java Bytecode

+ Like assembly code for JVM,
but works on all IVMs

= Hardware-independent!
+ Typed (unlike x86 assembly)
« Strong JVM protections

L27: Javaand C

CSE351, Winter 2020

j\//\/\ Mo de |

Holds pointer this

Other arguments to method

Other local variables

|

v i | \

0|1|2|3|4 n

variable table

operand stack

constant

pool

32

CSE351, Winter 2020

WA UNIVERSITY of WASHINGTON L27: Javaand C

Holds pointer this

JVM Operand Stack

Other arguments to method

Other local variables

l

C:&JrL [

JVM: 0f1 3[4] n
variable table
N operand stack
ﬂl' = integer,) D
‘a’ = reference,
‘b’ for byte,
‘c’ for char,
\’d’ for double, . /? | constant
l A pool
Bytecode: iload 1 / push 15t ar nt from table onto stack
1load 2 // ‘pﬁ_zf"d;gﬁﬁ;knt from table onto stack
1add // Welements from stack, add together, and
S push result back onto stack
istore 3 |\ // pop result and put it into third slot in table

/
No registers or stack locations!
All operations use operand stack

Compiled
A32) x86:

mov 8(%ebp), %eax
mov 12(%ebp), %edx
add %edx, %eax

mov %eax, -8(%ebp)

33

WA UNIVERSITY of WASHINGTON L27: Javaand C CSES351, Winter 2020

A Simple Java Method

Method java.lang.String getEmployeeName()
@\"‘ST'U\C’\" b~ \\ﬁdA vess !

aload 0O // '"this"™ object is stored at O in the var table

1 getfield #5(<Field java.lang.String name>
j // getfield instruction has a 3-byte encoding
Tao-byte // Pop an element from top of stack, retrieve its
rgumet // specified instance field and push it onto stack
// "name' fTield 1s the Tifth field of the object

4 %return // Returns object at top of stack
Lre'&’f‘evxce
Byte number: 0 1 4
aload O |getfield 00 05 ~areturn

\/_ / ——

As stored in the _classfile: |2A|B4|00|05|B0O

http://en.wikipedia.org/wiki/Java bytecode instruction listings

34

WA UNIVERSITY of WASHINGTON L27: Javaand C CSES351, Winter 2020

Class File Format

« Every class in Java source code is compiled to its own class file
+ 10 sections in the Java class file structure:

= Magic number: OxCAFEBABE (legible hex from James Gosling — Java’s inventor)
= Version of class file format: The minor and major versions of the class file

= Constant pool: Set of constant values for the class

= Access flags: For example whether the class is abstract, static, final, etc.

= This class: The name of the current class

= Super class: The name of the super class

= Interfaces: Any interfaces in the class

= Fields: Any fields in the class

= Methods: Any methods in the class

= Attributes: Any attributes of the class (for example, name of source file, etc.)

+« A . jar file collects together all of the class files needed for
the program, plus any additional resources (e.g. images)

35

WA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Winter 2020

Compiled from Employee. java
Disassembled class Employee extends java.lang.Object {
public Employee(java.lang.String, int);
public java.lang.String getEmployeeName();

Java Bytecode o it setEmloyeeiunberO;

Method Employee(java.lang.String, int)
0 aload O

1 invokespecial #3 <Method java.lang.Object()>
4 aload O

5 aload_1

6 putfield #5 <Field java.lang.String name>

9 aload O

10 i1load 2

11 putfield #4 <Field int idNumber>

14 aload O

15 aload 1

> javap -c Employee 16 iload_2
v 17 invokespecial #6 <Method void

storeData(java.lang.String, int)>

> javac Employee.java

20 return

Method java.lang.String getEmployeeName()

0 aload O

1 getfield #5 <Field java.lang.String name>
4 areturn

Method int getEmployeeNumber()
0 aload O
- . - 1 getfield #4 <Field int idNumber>
http://en.wikipedia.org/wiki/Java 2 ?retum

bytecode instruction listings

Method void storeData(java.lang.String, int)
36

WA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Winter 2020

Other languages for JVMs

J
L4

JVMs run on so many computers that compilers have been
built to translate many other languages to Java bytecode:
= Aspect), an aspect-oriented extension of Java

= ColdFusion, a scripting language compiled to Java

= Clojure, a functional Lisp dialect

= @roovy, a scripting language

= JavaFX Script, a scripting language for web apps

= JRuby, an implementation of Ruby

= Jython, an implementation of Python

= Rhino, an implementation of JavaScript

= Scala, an object-oriented and functional programming language

= And many others, even including C!

+ Originally, JVMs were designed and built for Java (still the

major use) but JVMs are also viewed as a safe, GC'ed platform
37

WA UNIVERSITY of WASHINGTON L27: Javaand C CSE351, Winter 2020

Microsoft’s C# and .NET Framework

« C# has similar motivations as Java

C# VB.NET J#
code code code

Common Intermediate Langu l l l
ode for C# and oth | | |
languages in the .NET framework Combier] |Eomplien] (iSompRer

— |

J a \fh C jj, S Common Language Infrastructure - ------- .

NET compatible languages compile to a
Common second platform-neutral language called
- Intermediate Common Intermediate Language (CIL).

Language

C / (: The platform-specific Common Language
(O sz Ea%mﬂzoré Runtime (CLR) compiles CIL to machine-
- guag readable code that can be executed on the

Runtime
current platform,

-

01001100101011
11010101100110

e o S e e e 38

WA UNIVERSITY of WASHINGTON L27: Javaand C

CSE351, Winter 2020

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables

Arrays & structs
Memory & caches
Processes

Virtual memory
Memory allocation
Javavs. C

We made it! ©
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car(Q);
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); C.getMPG();
~s —
Assembly get_mpg:
. pushqg %rbp
language: mov(q %rsp, %rbp
éééq %rbp
ret i$
Machine 0111010000011000
de: 100011010000010000000010
code. 1000100111000010
110000011111101000011111
Computer

system:

39

