WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Memory Allocation Il
CSE 351 Winter 2020

Instructor:
Ruth Anderson

Teaching Assistants:
Jonathan Chen
Justin Johnson
Porter Jones

Josie Lee

Jeffery Tian

Callum Walker
Eddy (Tianyi) Zhou

https://xkcd.com/835/

https://xkcd.com/835/

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Administrivia

+» hw22 due Wednesday (3/11) — Do EARLY, will help
with Lab 5

+» Lab 5 (on Mem Alloc) due the last day of class (3/13)
= Can only use 1 late day (hard deadline Sun 3/15)
" Light style grading

+ Final Exam:
Wed, March 18, 2:30-4:20pm in CSE2 G20

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Allocation Policy Tradeoffs

» Data structure of blocks on lists
=" |mplicit (free/allocated), explicit (free), segregated (many
free lists) — others possible!
» Placement policy: first-fit, next-fit, best-fit
" Throughput vs. amount of fragmentation
» When do we split free blocks?

®" How much internal fragmentation are we willing to tolerate?

+» When do we coalesce free blocks?
" Immediate coalescing: Every time free is called

" Deferred coalescing: Defer coalescing until needed

- e.g. when scanning free list for malloc or when external
fragmentation reaches some threshold

YA UNIVERSITY of WASHINGTON

L26: Memory Allocation 11l

CSE351, Winter 2020

More Info on Allocators

+ D. Knuth, “The Art of Computer Programming”, 2"
edition, Addison Wesley, 1973

" The classic reference on dynamic storage allocation

» Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l| Workshop on

Memory Management, Kinross, Scotland, Sept, 1995.
" Comprehensive survey

= Available from CS:APP student site (csapp.cs.cmu.edu)

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill

Memory Allocation

*

Dynamic memory allocation

" Introduction and goals

= Allocation and deallocation (free)
" Fragmentation

*

Explicit allocation implementation
" Implicit free lists

= Explicit free lists (Lab 5)

= Segregated free lists

» Implicit deallocation: garbage collection
+» Common memory-related bugs in C

CSE351, Winter 2020

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Wouldn’t it be nice...

+ If we never had to free memory?
+~ Do you free objects in Java?

= Reminder: implicit allocator

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Garbage Collection (GC)

(Automatic Memory Management)

+ Garbage collection: automatic reclamation of heap-allocated
storage — application never explicitly frees memory

void foo () {
int* p = (int*) malloc(128);
return; /* p block is now garbage! */

+» Common in implementations of functional languages, scripting
languages, and modern object oriented languages:

= Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,
JavaScript, Dart, Mathematica, MATLAB, many more...

+» Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Garbage Collection

+» How does the memory allocator know when memory

can be freed?

" |n general, we cannot know what is going to be used in the
future since it depends on conditionals

" But, we can tell that certain blocks cannot be used if they
are unreachable (via pointers in registers/stack/globals)

+» Memory allocator needs to know what is a pointer
and what is not — how can it do this?

= Sometimes with help from the compiler

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Memory as a Graph

+» We view memory as a directed graph
= Each allocated heap block is a node in the graph
= Each pointer is an edge in the graph

" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, stack locations, global variables)

Root nodes Q Q Q
Heap nodes \ O reachable

not reachable

Q (garbage)

O

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

CSE351, Winter 2020

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill

Garbage Collection

» Dynamic memory allocator can free blocks if there are
no pointers to them

+» How can it know what is a pointer and what is not?

+» We'll make some assumptions about pointers:

= Memory allocator can distinguish pointers from non-
pointers
= All pointers point to the start of a block in the heap

= Application cannot hide pointers
(e.g. by coercing them to a 1ong, and then back again)

10

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Classical GC Algorithms

R/
0.0

R/
0.0

Mark-and-sweep collection (McCarthy, 1960)
= Does not move blocks (unless you also “compact”)
Reference counting (Collins, 1960)

= Does not move blocks (not discussed)

Copying collection (Minsky, 1963)

= Moves blocks (not discussed)

Generational Collectors (Lieberman and Hewitt, 1983)
= Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.
For more information:

= Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of
Automatic Memory Management, CRC Press, 2012.

= Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic
Memory, John Wiley & Sons, 1996.

11

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Mark and Sweep Collecting

+» Can build on top of malloc/free package

= Allocate using malloc until you “run out of space”

+ When out of space:
= Use extra mark bit in the header of each block
" Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

A\ /\r
Arrows are NOT
Before mark I_ I I I : I _I [free list pointers]

Aftermark] | | | |’ | B Mark bit set

After sweep |_|_| free | ' free | |]

12

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Assumptions For a Simple Implementation

Non-testable
Material

+ Application can use functions to allocate memory: {
" b=new (n) returns pointer, b, to new block with all locations cleared
" b[i] read location i of block b into register
" blil=Vv write v into location i of block b

+ Each block will have a header word (accessedatb [-11])

+» Functions used by the garbage collector:
" is ptr(p) determines whether p is a pointer to a block

" length (p) returns length of block pointed to by p, not including
header

" get roots () returnsallthe roots

13

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Mark [orenane ™)

+» Mark using depth-first traversal of the memory graph

ptr mark (ptr p) { // p: some word in a heap block
if (!is ptr(p)) return; // do nothing if not pointer
if (markBitSet (p)) return; // check if already marked
setMarkBit (p) ; // set the mark bit
for (i=0; i<length(p); i++) // recursively call mark on

mark (p[i]); // all words in the block

return;

}

root
/\¥ /\T
Before mark || _| | I | N

Aftermark] | | | |’ |] Mark bit set

14

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Non-testable
Material

Sweep

+~ Sweep using sizes in headers

ptr sweep (ptr p, ptr end) { // ptrs to start & end of heap
while (p < end) { // while not at end of heap
if (markBitSet (p)) // check if block is marked
clearMarkBit (p) ; // i1f so, reset mark bit
else if (allocateBitSet(p)) // if not marked, but allocated
free (p); // free the block
p += length (p); // adjust pointer to next block
}
}

After mark I__'l\l/‘l/ | / | _I Mark bit set

After sweep |_ free | ' free | | _I

15

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Non-testable

Conservative Mark & Sweep in C [

|

+» Would mark & sweep work in C?

" is ptr determines if a word is a pointer by checking if it points to an
allocated block of memory

= Butin C, pointers can point into the middle of allocated blocks
(not so in Java)
Makes it tricky to find all allocated blocks in mark phase

ptr
header 1

" There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:

- Every reachable node correctly identified as reachable, but some unreachable
nodes might be incorrectly marked as reachable

" |nlJava, all pointers (i.e. references) point to the starting address of an
object structure — the start of an allocated block

16

YA UNIVERSITY of WASHINGTON

L26: Memory Allocation 11l

CSE351, Winter 2020

Memory-Related Perils and Pitfalls in C

A)
B)
C)
D)
E)
F)
G)

H)

Slide

Program stop
possible?

Dereferencing a non-pointer

Freed block — access again

Freed block — free again

Memory leak — failing to free memory

No bounds checking

Reading uninitialized memory

Referencing nonexistent variable

Wrong allocation size

Fixes:

17

YA UNIVERSITY of WASHINGTON

L26: Memory Allocation 11l

CSE351, Winter 2020

Find That Bug! (Slide 18)

char s[8];

int 1i;

gets(s); /* reads "123456789" from stdin */
Error Prog stop Fix:
Type: Possible?

18

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Find That Bug! (Slide 19)

int* foo () {
int val = 0;

return &val;

}
Error Prog stop Fix:
Type: Possible?

19

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Find That Bug! (Slide 20)

int **p;
p = (int **)malloc(N * sizeof (int));

for (int 1 = 0; i < N; 1++) {
pli] = (Iint *)malloc(M * sizeof (int));

- N and M defined elsewhere (#define)

Error Prog stop Fix:
Type: Possible?

20

CSE351, Winter 2020

L26: Memory Allocation 11l

YA UNIVERSITY of WASHINGTON

Find That Bug! (Slide 21)

/* return y = Ax */
int *matvec (int **A, int *x) {

int i, 3;

for (1 = 0; 1 < N; 1i++)
for (j = 0; 7 < N; J++)
yIi] += A[1][J] * x[]J];

return y;

int *y = (int *)malloc(N*sizeof (int)

) ;

« A is NXN matrix, x is N-sized vector (so product is vector of size N)

- N defined elsewhere (#define)

Error Prog stop Fix:
Type: Possible?

21

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Find That Bug! (Slide 22)

+» The classic scanf bug

" int scanf (const char *format)

int val;

scanf ("%d", wval);

Error Prog stop Fix:
Type: Possible?

22

YA UNIVERSITY of WASHINGTON

L26: Memory Allocation 11l

Find That Bug! (Slide 23)

free(x);

// manipulate y

X = (int*)malloc(N * sizeof (1int)
// manipulate x

free(x);

y = (int*)malloc(M * sizeof (int)

Error
Type:

Prog stop
Possible?

Fix:

CSE351, Winter 2020

23

YA UNIVERSITY of WASHINGTON

L26: Memory Allocation 11l

Find That Bug! (Slide 24)

X = (int*)malloc(N * sizeof (int));
// manipulate x
free(x);
y = (int*)malloc(M * sizeof (int));
for (i=0; 1<M; i++)
y[1] = x[1]++;
Error Prog stop Fix:
Type: Possible?

CSE351, Winter 2020

24

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Find That Bug! (Slide 25)

typedef struct L {

int val;
struct L *next;
} list;
void foo () {
list *head = (list *) malloc(sizeof (list));

head->val = 0;
head->next = NULL;
// create and manipulate the rest of the 1ist

free (head) ;
return;

Error Prog stop Fix:
Type: Possible?

25

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Non-testable
Material

Dealing With Memory Bugs

+» Conventional debugger (gdb)
" Good for finding bad pointer dereferences
" Hard to detect the other memory bugs

+~ Debuggingmalloc (UToronto CSRImalloc)
" Wrapper around conventionalmalloc

"= Detects memory bugs atmalloc and free boundaries
- Memory overwrites that corrupt heap structures
- Some instances of freeing blocks multiple times
- Memory leaks
= Cannot detect all memory bugs
- Overwrites into the middle of allocated blocks
- Freeing block twice that has been reallocated in the interim
- Referencing freed blocks

26

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Non-testable]

Dealing With Memory Bugs (cont.) e

+» Some malloc implementations contain checking
code
" Linux glibc malloc: setenv MALLOC CHECK 2
" FreeBSD: setenv MALLOC OPTIONS AJR

» Binary translator: valgrind (Linux), Purify

= Powerful debugging and analysis technique

4

= Rewrites text section of executable object file
= Can detect all errors as debuggingmalloc

" Can also check each individual reference at runtime
- Bad pointers
« Overwriting

- Referencing outside of allocated block
27

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

What about Java or ML or Python or ...?

{ Non-testable]

Material

+» In memory-safe languages, most of these bugs are

4

impossible

= Cannot perform arbitrary pointer manipulation
= Cannot get around the type system

" Array bounds checking, null pointer checking

= Automatic memory management

But one of the bugs we saw earlier is possible. Which
one?

28

YA UNIVERSITY of WASHINGTON L26: Memory Allocation Ili CSE351, Winter 2020

Memory Leaks with GC

- Not because of forgotten free — we have GC!
» Unneeded “leftover” roots keep objects reachable

» Sometimes nullifying a variable is not needed for correctness
but is for performance

» Example: Don’t leave big data structures you’re done with in a
static field

Root nodes Q Q Q
Heap nodes 4} \ O reachable

not reachable

(garbage)
O
O

29

