WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Memory Allocation il
CSE 351 Winter 2020

Instructor:
Ruth Anderson

Teaching Assistants:
Jonathan Chen
Justin Johnson
Porter Jones

Josie Lee

Jeffery Tian

Callum Walker £ .
Eddy (Tianyi) Zhou oM

ColFFd FF

T T
& VI ¥

https://xkcd.com/835/

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Administrivia

+» hw22 due Wednesday (3/11) — Do EARLY, will help
with Lab 5

+» Lab 5 (on Mem Alloc) due the last day of class (3/13)
= Can only use 1 late day (hard deadline Sun 3/15)
" Light style grading

+ Final Exam:
Wed, March 18, 2:30-4:20pm in CSE2 G20

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Allocation Policy Tradeoffs

» Data structure of blocks on lists

=" |Implicit (free/allocated), explicit (free), segregated (many
free lists) — others possible!

» Placement policy: first-fit, next-fit, best-fit

" Throughput vs. amount of fragmentation

+ When do we split free blocks?

" How much internal fragmentation are we willing to tolerate?

+ When do we coalesce free blocks? e dsumed i

L' o
" Immediate coalescing: Every time free iscalled “f o e

* Deferred coalescing: Defer coalescing until needed

« e.g. when scanning free list for mal loc or when external
fragmentation reaches some threshold

WA UNIVERSITY of WASHINGTON

L26: Memory Allocation 111

CSE351, Winter 2020

More Info on Allocators

+» D. Knuth, “The Art of Com
edition, Addison Wesley, 1973

" The classic reference on dyn

r Programming”, 2"
ic storage allocation

+» Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’l Workshop on

Memory Management, Kinross, Scotland, Sept, 1995.
" Comprehensive survey

= Available from CS:APP student site (csapp.cs.cmu.edu)

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Il

Memory Allocation

+» Dynamic memory allocation
" |Introduction and goals
= Allocation and deallocation (free)
" Fragmentation

+ Explicit allocation implementation
" Implicit free lists
= Explicit free lists (Lab 5)
= Segregated free lists

(’_

+» Implicit deallocation: garbage collection

\ +» Common memory-related bugs in C

CSE351, Winter 2020

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Wouldn’t it be nice...

+ If we never had to free memory?

+» Do you free objects in Java?
= Reminder: implicit allocator

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Garbage Collection (GC)

(Automatic Memory Management)

« Garbage collection: automatic reclamation of heap-allocated
storage — application never explicitly frees memory

void foo() {

stk Nt p = (int¥) malloc(128); "e=r
return; /* p block is now garbage! */
} p s o‘eallocwi-eo\

« Common in implementations of functional languages, scripting
languages, and modern object oriented languages:

= Lisp, Racket, Erlang, ML, Haskell, Scalg C#, Perl, Ruby, Python, Lua,
JavaScript, Dart, Mathematica, MATLAB, many more...

+ Variants (“conservative” garbage collectors) exist for C and C++
= However, cannot necessarily collect all garbage

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Garbage Collection

+» How does the memory allocator know when memory

can be freed?

" |n general, we cannot know what is going to be used in the
future since it depends on conditionals

" But, we can tell that certain blocks cannot be used if they
are unreachable (via pointers in registers/stack/globals)

+» Memory allocator needs to know what is a pointer
and what is not — how can it do this?

= Sometimes with help from the compiler

CSE351, Winter 2020

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Il

Memory as a Graph

+» We view memory as a directed graph
= Each allocated heap block is a node in the graph

= Each pointer is an edge in the graph
" Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, stack locations, global variables)

Root nodes Q Q

Heap nodes O reachable
> s <]
o Llock A/ O not reachable
Dnose phy“?")\«) (garbage)
,,\)\O\:V\S ?0\
o v

A node (block) is reachable if there is a path from any root to that node
Non-reachable nodes are garbage (cannot be needed by the application)

‘00\'\’\'8\6 W \Jour Vro(CSS

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Garbage Collection

+» Dynamic memory allocator can free blocks if there are
no pointers to them

» How can it know what is a pointer and what is not?

+» We'll make some assumptions about pointers:

Memory allocator can distinguish pointers from non-
pointers

= All pointers point to the start of a block | heap

= Application cannot hide pointers
(e.g. by coercing them to a long, and then back again)

10

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Classical GC Algorithms

+» Mark-and-sweep collection (McCarthy, 1960)

= Does not move blocks (unless you also “compact”)
+ Reference counting (Collins, 1960)
= Does not move blocks (not discussed)
+ Copying collection (Minsky, 1963)
= Moves blocks (not discussed)
+ Generational Collectors (Lieberman and Hewitt, 1983)

"= Most allocations become garbage very soon, so
focus reclamation work on zones of memory recently allocated.

« For more information:

= Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of
Automatic Memory Management, CRC Press, 2012.

= Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic
Memory, John Wiley & Sons, 1996.

11

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Mark and Sweep Collecting

% Can build on top of mal loc/free package
= Allocate using mal loc until you “run out of space”

« When out of space:

= Use extra mark bit in the header of each bIocIé'

Sim;'ar +o
is-aloccded 7 b

" Mark: Start at roots and set mark bit on each reachable block
= Sweep: Scan all blocks and free blocks that are not marked

. ? Arrows are NOT
forem Sk I_ I I~ Dl m_l [free list pointers]

Mar |<e)‘ \/
Swueep ’\t/_\ﬂmb

After mark {/l/_[/ | |
/ \
free I _I

After sweep |_| | free |

k

_I Mark bit set

'

12

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Il

Assumptions For a Simple Implementation

CSE351, Winter 2020

Non-testable

J

- Application can use functions to allocate memory: [Material
* b=new(n) returns pointer, b, to new block with all locations cleared
= p[1] read location 1 of block b into register
" b[1]=v write V into location 1 of block b

» Each block will have a header word (accessed at b[-1])

o He magit 1hat hondles our ﬁS’ump'noﬂS-/
Functions used by the garbage collector:

= 1s_ptr(p) determines whether p is a pointer to a block

= length(p) returns length of block pointed to by p, not including
header

= get _roots() returnsall the roots

13

CSE351, Winter 2020

WA UNIVERSITY of WASHINGTON

Mark

L26: Memory Allocation 111

X = gelrodts O

{or P m X

Non-testable
Material

« Mark using depth-first traversal of the memory graph

ptr mark(ptr p) {
i1IT (lis _ptr(p))
It (markBitSet(p)) return;
setMarkBit(p);

return;

for (1=0;
mark(pLil);

return;

i<length(p); i1++)

// p: some word in a heap block

// do nothing 1f

// check 1f already markgg _ ok
// set the mark bit LIOWﬁSQWJ
// recursively call mark on

not pointer

c\,c\e S

_ ‘wew“(»
// all words in the bloCK', uiy drered

Before mark

After mark

L

—

L

_I Mark bit set

14

CSE351, Winter 2020

WA UNIVERSITY of WASHINGTON

Sweep

L26: Memory Allocation 111

+» Sweep using sizes in headers

Non-testable
Material

J

ptr sweep(ptr p, ptr end) {
while (p < end) {

It (markBitSet(p))
clearMarkBit(p);

else 1T (allocateBitSet(p))

// ptrs to start & end of heap
// while not at end of heap

// check 1T block
// it so,

1S marked
reset mark bit
// 1T not marked, but allocated

nexd free(p); // Tree the block
blodk ——p += length(p); // adjust pointer to next block
+
+
m
After mark ‘ |] Mark bit set

After sweep

fre

fre

15

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Non-testable

Conservative Mark & Sweep in C ["

J

+» Would mark & sweep work in C?

= Is_ptr determines if a word is a pointer by checking if it points to an
allocated block of memory

= Butin C, pointers can point into the middle of allocated blocks
(not so in Java)
- Makes it tricky to find all allocated blocks in mark phase

ptr
header l

" There are ways to solve/avoid this problem in C, but the resulting
garbage collector is conservative:

- Every reachable node correctly identified as reachable, but some unreachable
nodes might be incorrectly marked as reachable

= InJava, all pointers (i.e. references) point to the starting address of an
object structure — the start of an allocated block

16

WA UNIVERSITY of WASHINGTON

L26: Memory Allocation 111

CSE351, Winter 2020

Memory-Related Perils and Pitfalls in C

A)
B)
C)
D)
E)
F)
G)

H)

Program stop

Slide possible?
Dereferencing a non-pointer 22 Y
Freed block — access again 24 \|/
Freed block — free again 23 j/
Memory leak — failing to free memory | 25 /\.)
No bounds checking 18 N
Reading uninitialized memory 21 N
Referencing nonexistent variable 19 N
Wrong allocation size 20 Y

Fixes:

5Can{(l ,)@__vcl)
freels) later

fV‘eE(y)
fre al nodeS

foets

Callo¢

ma lle

Sizest (it ¥)

17

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Find That Bug! (Slide 18)

char s[8]; //sall huftfe
int 1;

gets(s); /* reads '"123456789" from stdin */

| [
no kounds Clmed:’-ng bifler overflow.
Error E Prog stop Y Fix: ‘Fgc’_s (s,i)

Type: Possible?

18

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Find That Bug! (Slide 19)

int* foo() {
int val = 0O;

return &val;

} ,C Can';;iﬂ N
o register

Te‘ferensjnj4 \m\u’(} eddre 5)

e on the shuck
Error G Prog stop /\} Fix: PC\U'\"‘I'WFven(.e o oo
Type: Possible? o wie malloc metead

19

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Find That Bug! (Slide 20)

iInt **p;

= (int *)malloc(N * sizeof(int));
,Cfa\b(ad‘es N ks = 4*N by‘\‘es
for (int 1 = 0; 1 < N; i++) {
p[1] = (int *)malloc(M * sizeof(int));
} ,\Ltor'r}e,s +o rr\‘|'~k Z*M Bf"es

« N and M defined elsewhere (#defi1ne)

LWron rowns (;'H 9,\6
alocofion ot alocated
size Block
Error H Prog stop Y Fix: N ¥ sizest Cint *)
Type: Possible? o

20

WA UNIVERSITY of WASHINGTON

L26: Memory Allocation 111

Find That Bug! (Slide 21)

/* return y = Ax */
int *matvec(int **A, 1Int *x) {
int *y = (int *)malloc(N*sizeof(int));
int 1, j;
for (i = 0; i < N; i++)
for (J = 0; J < N; j++)
yLi1(ALIIO1 * x01;
y i]= T+ ATIGT* % [3;
o /\
1 return y; Lvec\o\s 3«»—5«5@/

A is NxN matrix, X is N-sized vector (so product is vector of size N)

« N defined elsewhere (#defi1ne)

umh"\-\a\ﬁzeo\ (\\»8“ W\r\j gor\oge \ﬂx\ues
MeMO"y T rung ‘Fne \ad‘ge‘i' weird ‘(ﬂuH’S
Error Prog stop Fix:
Type: F Possible? N calloc (N, S'nae«*(m‘*))

CSE351, Winter 2020

21

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Find That Bug! (Slide 22)

+ The classic scanT bug
= Int scanf(const char *format)

int val;

Scanf("%d", Val); — rew)S "V‘pui\') porses \n’", stores 3?7"0 location VG»\

segfatt f val

does nat oAtain
dereferencing 6 Valid 6ddres
Q nor\'pu.\v\'\‘ef
Error /A\ Prog stop \(Fix: scant (%o\', EW\‘),'
Type: Possible?

22

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Find That Bug! (Slide 23)

x = (int*)malloc(N * sizeof(int));
// manipulate X
free(X);

y = (int*)malloc(M * sizeof(int));
— // manipulate y
free(x);

twndelined behaviov

‘(T’(C Q&G\;V\ (Some Sy.(‘lenj wll &j‘ﬁml"')

Error C Prog stop w/ Fix: "G'ee()‘>

Type: Possible?

LP!OLQUY (7N ')ly‘a:

23

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Find That Bug! (Slide 24)

x = (int*)malloc(N * sizeof(int));
// manipulate X
free(Xx);

y = (int®)malloc(M * sizeof(int));
for (1=0; 1I<M; 1++)
VLIl = LT+

ur\de‘ﬁke()‘
Gecess Free) memory balne vio v

Error B Prog stop \(Fix: +Free() luder

Type: Possible? (ot bsttom)

24

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Find That Bug! (Slide 25)

typedef struct L {

int val; vl red 5
struct L *next; nole - [
} list;

void foo() {
list *head = (list *) malloc(sizeof(list));
head->val = O;
head->next = NULL;
// create and manipulate the rest of the list

- - - /Lv\-\al'-xs here hecd 7 \
free(head); Er—\iiﬁfzsjjfrﬁ\Llf|
return; . / "

+ Q-M\V Frues st robe \j leaked
‘ﬁbw do Yyor
7
Error .D Prog stop N Fix: recursive/ iterdive
Type: Possible? free owr lish

25

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Il

CSE351, Winter 2020

Non-testable
Material

Dealing With Memory Bugs

J

» Conventional debugger (gdb)

" Good for finding bad pointer dereferences
" Hard to detect the other memory bugs

+» Debugging mal loc (UToronto CSRI mal loc)
= Wrapper around conventional mal loc
= Detects memory bugs at mal loc and free boundaries

« Memory overwrites that corrupt heap structures
« Some instances of freeing blocks multiple times
« Memory leaks

= Cannot detect all memory bugs
« Overwrites into the middle of allocated blocks

« Freeing block twice that has been reallocated in the interim
« Referencing freed blocks

26

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Non-testable

Dealing With Memory Bugs (cont.) [e

J

+» Some mal loc implementations contain checking
code

® Linux glibc malloc: setenv MALLOC CHECK 2
= FreeBSD: setenv MALLOC OPTIONS AJR

+ Binary translator@]ﬂnux), Purify
= Powerful debugging and analysis technique
= Rewrites text section of executable object file
= Can detect all errors as debugging mal 1oc

® Can also check each individual reference at runtime
- Bad pointers
« Overwriting

- Referencing outside of allocated block

27

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

What about Java or ML or Python or ...?

Non-testable
Material

+» In memory-safe languages, most of these bugs are

4

impossible

" Cannot perform arbitrary pointer manipulation
= Cannot get around the type system

" Array bounds checking, null pointer checking

= Automatic memory management

But one of the bugs we saw earlier is possible. Which
one?

28

WA UNIVERSITY of WASHINGTON L26: Memory Allocation Ill CSE351, Winter 2020

Memory Leaks with GC

Not because of forgotten free — we have GC!
- Unneeded “leftover” roots keep objects reachable
- Sometimes nullifying a variable is not needed for correctness

but is for performance ‘F"ffw(tf))
: p = MULL,) L
» Example: Don’t leave big data structures you’re done with in a

static field

Root nodes €:> (;) <:2
Heap nodes O reachable
O not reachable

(garbage)

O

29

WA UNIVERSITY of WASHINGTON

L26: Memory Allocation 111

CSE351, Winter 2020

Freeing with LIFO Policy (Explicit Free List)

Predecessor

Block

sSuccessor
Block

Change in
Nodes in

Number of
Pointers

Case 1

Case 2

Case 3

Case 4

Allocated
Allocated
Free

Free

Allocated
Free
Allocated

Free

Free List

Updated

