WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

WHEN Wil WE FORGET?
° BASED ON S (ENSUs BUREAV
Memory Allocation | NATONAL POPGLATIN FREETONS
CSE 351 Winter 2020 TS RO CEoRe Pt S oet -

BY THIS | THE MPIORITY OF AMERICANS
YEAR: | WL BE TOOYONG TO REMEMBER:

Instructor: 2006 | RETURN OF T JEDY RELEASE.
2017 | THE FIRST APRE MACNTSH
Ruth Anderson 208 | Newoxe
00 | CHAUENGER
Teaching Assistants: 2020 | CHERNOBYL
Jonathan Chen 221 | BLACK MONDAY
. 2022 | THE REAGAN PRESIDENGY
Justin Johnson 2073 | THE BeERuN WAL
Porter Jones 2024 | HAMMERTME

2025 | THE SOVIET UNION

losie Lee 20% | THE LARIOTS

Jeffery Tian 2027 | LORENA BOBRITT
Callum Walker 222: rﬁgjmaima: %E’ZGDEEEEE
Eddy (Tianyi) Zhou 2030 | OTSMPSNG TRIAL

D38 | ATIME BEFORE FACERDK.
2039 | WRY's Z LovE THE Vs

2040 | HURRICANE KATRINA

2041 | THE RLANET Pwrmo

2042 | THE FIRST iFHONE

Adapted from o7 | ANYTHING EIBARRASOING
https://xkcd.com/1093/ YOU DO ToDAY

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSES351, Winte

Administrivia

+ Section on 3/05 — Lab 5! Bringing laptop may be useful
» hw20 due Friday (3/06)

» hw21 due Monday (3/09)

» hw22 due Wednesday (3/11) — Do EARLY, will help
] \\
with Lab 5

+» Lab 5 (on Mem Alloc) due the last day of class (3/13)

" The most significant amount of C programming you will do in
this class — combines lots of topics from this class: pointers,
bit manipulation, structs, examining memory

" Understanding the concepts first and efficient debugging will
save you lots of time

= Can be submitted at most ONE day late. (Sun 3/15)

r 2020

2

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Roadmap

C: Java:

car *c = malloc(sizeof(car)); Car ¢ = new Car(Q);

c->miles = 100; c.setMiles(100);

c->gals = 17; c.setGals(17);

float mpg = get _mpg(c); float mpg =

free(c); C.getMPG();
~S —

Assembly get_mpg:

language: pushg %rbp

movq %rsp, %rbp _
Memory allocation

popq %rbp

ret y
Machine 0111010000011000
de: 100011010000010000000010
coae: 1000100111000010
110000011111101000011111
Computer

system:

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Multiple Ways to Store Program Data

+ Static global dataf—\ :
>INt array[1024];

" Fixed size at compile-time

= Entire lifetime of the program | Vvold foo(int n) {

int tmp;
(loaded from executable) “Zint local_array[n];

= Portion is read-only
(e.g. string literals) Int* dyn =

(int®)malloc(n*sizeof(int));

+ Stack-allocated data }
" Local/temporary variables

« Can be dynamically sized (in some versions of C)

= Known lifetime (deallocated on return)

< Dynamic (heap) data
= Size known only at runtime (i.e. based on user-input)

= Lifetime known only at runtime (long-lived data structures)

CSE351, Winter 2020

WA UNIVERSITY of WASHINGTON L24: Memory Allocation |

Memory Allocation

Dynamic memory allocation
" |ntroduction and goals

*

= Allocation and deallocation (free)
" Fragmentation

Explicit allocation implementation

*

" Implicit free lists
= Explicit free lists (Lab 5)
= Segregated free lists

» Implicit deallocation: garbage collection
» Common memory-related bugs in C

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Dynamic Memory Allocation

+» Programmers useldynamic memory alloca 0

acquire virtual memory at run time User stack

" For data structures whose size f ‘
(or lifetime) is known only at runtime Heap (via mal loc)

| Manage the heap of a process’ Uninitialized data (. bss)

virtual memorv: Initialized data (. data)
y: Program text (. text)

+ Types of allocators

= Explicit allocator: programmer allocates and frees space

« Example: malloc and freein C
_L - ———

= |mplicit allocator: programmer only allocates space (no free)

- Example: garbage collection in Java, Caml, and Lisp

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Dynamic Memory Allocation

2 AIIoca’gqor organizes heap as a collection of variable-
sized blogks, which are either allocated or free

= Allocator requests pages in the heap region; virtual memory
hardware and OS kernel allocate these pages to the process

= Application objects are typically smaller than pages, so the
allocator manages blocks within pages

 (Larger objects handled too; User stack
ignored here) t ‘
Top of heap
Heap (via mal loc) (brk ptr)

Uninitialized data (. bss)
Initialized data (. data)
Program text (. text)

WA UNIVERSITY of WASHINGTON

L24: Memory Allocation |

CSE351, Winter 2020

Allocating Memory in C

+ Needto#i1nclude <stdlib.h>
« void* malloc(size_t sSi1ze)
= Allocates a continuous block of S1ze bytes of uninitialized memory

= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request

- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
« Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

« Good practices:

= ptr = (int*) malloc(n*sizeof(int));
- S1zeoT makes code more portable

- void¥*is implicitly cast into any pointer type; explicit typecast will help you
catch coding errors when pointer types don’t match

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Allocating Memory in C

+ Needto#i1nclude <stdlib.h>
« void* malloc(size_t size)
= Allocates a continuous block of S1ze bytes of uninitialized memory

= Returns a pointer to the beginning of the allocated block; NULL indicates
failed request

- Typically aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
« Returns NULL if allocation failed (also sets errno) or size==

= Different blocks not necessarily adjacent

« Related functions:

= void* calloc(size_t nitems, size t size)
- “Zeros out” allocated block

= void* realloc(void* ptr, size t size)
« Changes the size of a previously allocated block (if possible)

= void* sbrk{(intptr_t increment)
« Used internally by allocators to grow or shrink the heap

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Freeing Memory in C

+ Needto#1nclude <stdlib.h>

- - doesn“l’ dr\ansc the PunJ(er.'
oo VOld free(VO|d* ﬁj— (how porls o Aeallo(ated memory)

= Releases whole block pointed to by p to the pool of available memory

—_———

" Pointer p must be the address originally returned by m/c/real loc
(i.e. beginning of the block), otherwise system exception raised

= Don’t call Free on a block that has already been released or on NULL

10

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Memory Allocation Example in C

void foo(int n, int m) {
int 1, *p;
p = (int*) malloc(n*sizeof(int)); /* allocate block of nints */

IT (p == NULL) { /™ check for allocation error */
perror("'malloc™); ¢—print message relates o errno
ex1t(0);
+
for (1=0; 1<n; i1++) /™ initialize int array */
pL1] = 1;
/™ add space for m ints to end of p block */
_7p = (int*) realloc(p, (n+tm)*sizeof(int));
// iIT (p == NULL) { /™ check for allocation error */
perror("'realloc');
exi1t(0);
+
for (i=n; 1 < n+m; 1++) /™ initialize new spaces */
pL1] = 1;
for (1=0; i<n+m; 1++) /> print new array */
printf(C'%d\n", p[i]);:
free(p); /> freep >/

11

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

=1 word = 8 bytes

Notation

+» We will draw memory divided into words
" Each word is 64 bits = 8 bytes

= Allocations will be in sizes that are a multiple of boxes
(i.e. multiples of 8 bytes)

-

"= Book and old videos still use 4-byte word
- Holdover from 32-bit version of textbook)

/\(‘\
Heap :
\ N—
T |
Allocated block Free block
(4 words) (3 words) Free word
32 Lykeg 24 bytes

Allocated word

12

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

o = 8-byte word
Allocation Example
pl = malloc(32)
p2 = malloc(40)
p3 = malloc(48)
free(p2)
Ny — —

p4 = malloc(16) (/T’\) :::::j>
’JS w\a\] OCC’(0>

< GauIt

13

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Implementation Interface

+~ Applications
= Can issue arbitrary sequence of mal loc and free requests

" Must never access memory not currently allocated

" Must never free memory not currently allocated

« Also must only use Free with previously mal loc’ed blocks
<

\
« Allocators

= Can’t control number or size of allocated blocks

= Must respond immediately to mal loc (tarth veoder o buctfer)
= Must allocate blocks from free memory Cblscks cant overlap)

" Must align blocks so they satisfy all alignment requirements
= Can’t move the allocated blocks (dedrymestatinm nd! allgme &)

o) loreal Vour Pd\“*e“ :
14

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Performance Goals

+» @Goals: Given some sequence of mal loc and free
requests Ry, Ry, ..., Ry, ..., R,,_1, maximize throughput
and peak memory utilization

" These goals are often conflicting

1) Throughput
"= Number of completed requests per unit time

= Example:

« If 5,000 mal loc calls and 5,000 Free calls completed in 10 seconds,
then throughput is 1,000 operations/second

15

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Performance Goals

+ Definition: Aggregate payload P,
= mal loc(p) results in a block with a payload of p bytes

= After request R; has completed, the aggregate payload P,
is the sum of currently allocated payloads

+ Definition: Current heap size H,,

= Assume Hj;, is monotonically non-decreasing
« Allocator can increase size of heap using sbrk

2) Peak Memory Utilization

= Defined as U, = (ma}(x P;)/H;, after k+1 requests
1<

" Goal: maximize utilization for a sequence of requests
= Why is this hard? And what happens to throughput?

16

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Fragmentation

+» Poor memory utilization is caused by fragmentation

= Sections of memory are not used to store anything useful,
but cannot satisfy allocation requests

" Two types: internal and external

+» Recall: Fragmentation in structs

" |Internal fragmentation was wasted space inside of the struct
(between fields) due to alignment -

= External fragmentation was wasted space between struct
instances (e.g. in an array) due to alignment

+» Now referring to wasted space in the heap inside or
between allocated blocks

17

L24: Memory Allocation | CSE351, Winter 2020

WA UNIVERSITY of WASHINGTON

Internal Fragmentation

+» For a given block, internal fragmentation occurs if
payload is smaller than the block

block
A
| — — |
Interna Interna
fragmentation — | payload : fragmentation

+ Causes: e — /4 0

= Padding for alignment purpos& e
= QOverhead of maintaining{heap daﬁ—structuresl(inside block,
outside payload)

= Explicit policy decisions (e.g. return a big block to satisfy a
small request) Faster dhrahpet H sl indidually size every blook

+» Easy to measure because only depends on past
requests

18

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

= 8-byte word

External Fragmentation

+ For the heap, external fragmentation occurs when
allocation/free pattern leaves “holes” between blocks
" That is, the aggregate payload is non-continuous

= Can cause situations where there is enough aggregate heap memory to
satisfy request, but no single free block is large enough end ot heap

1
pl = malloc(32)

p2 = malloc(40)

p3 = malloc(48)

oxterng) -ﬂ;{r@d&m /S L)\,_k
%

40 bLytes 1€ LAes !
p4 = malloc(48) o0h no’(What would happen now?)
5’6 B +0T6\\ ee, b\ﬁ h«Sf) Cov\"'lg\w\.\b'

+» Don’t know what future requests will be

= Difficult to impossible to know if past placements will become
problematic

free(p2)

19

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Polling Question

+» Which of the following statements is FALSE?

/

= \/ote at http://pollev.com/rea

A A./Temporary arrays should not be allocated on the
\ Heap showd allocate on the Stack

/(B - mal loc returns an address of a block that is
s

. . loides onlys no intializotion
filled with garbage * etz
C. Peak memory utilization is a measure of both

] . ceadle (o6
internal and external fragmentation ﬁf’:sw f;;’“

V D. An allocation failure will cause your program to
Jus‘f retoens NULL

stop
E. We're lost...

20

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

Implementation Issues

+» How do we know how much memory to free given
just a pointer?

+» How do we keep track of the free blocks?

+» How do we pick a block to use for allocation (when
many might fit)?

+» What do we do with the extra space when allocating
a structure that is smaller than the free block it is
placed in?

+» How do we reinsert a freed block into the heap?

21

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

= 8-byte word (free)

Knowing How Much to Free

= 8-byte word (allocated)

« Standard method

= Keep the length of a block in the word preceding the data
« This word is often called the header field or header

—_—-—

= Requires an extra word for every allocated block

furneh oddress poins
p0< & start of fory lsd

|
pO = malloc(32) 40
block size data

(nd size of pay‘w])

free(pO)

Ls reu header af P8,
Lree Hht much S poce

22

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020

= 8-byte word (free)

Keeping Track of Free Blocks _ 8-byte word (allocated)

1) Implicit free list using length — links all blocks using math

= No actual pointers, and must check each block if allocated or free

-—— - -——
” N\ - \\ ” —~
- S

40 32 48 16

2) Explicit free list among only the free blocks, using pointers

/_\

40| 32 48 16

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
23

WA UNIVERSITY of WASHINGTON L24: Memory Allocation | CSE351, Winter 2020
Gdadreys is mublige sF §=051000

o o o e.g. with 8-byte alignment,

ImphClt Free LIStS possible values for size:
00001000 = 8 bytes

Nd 00010000 = 16 bytes

1 bit
r_
+ For each block we need: size, is-allocated? | 00011000 = 24 bytes

= Could store using two words, but wasteful - 4

+ Standard trick
= |f blocks are aligned, some low-order bits of S1ze are always 0

= Use lowest bit as an allocated/free flag (fine as long as aligning to K>1)

" When reading S1ze, must remember to mask out this bit!

8 bytes
—
Format of (; size aa = 1: allocated block If X is first word (header):
allocated and a=0: free block g+
free blocks: X = size | a;
payload size: block size (in bytes)
a=X & 1;
payload: application data
optional (allocated blocks only) size = X & ~1;
padding K

24

