WA UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Winter 2020

Caches lI

CSE 351 Winter 2020

Instructor:
Ruth Anderson

Teaching Assistants:
Jonathan Chen ‘ s O b
Justin Johnson Pl I e N R N T N e
Porter Jones A NS g ! |
Josie Lee

Jeffery Tian
Callum Walker
Eddy (Tianyi) Zhou

YA UNIVERSITY of WASHINGTON L17: Caches Il

An Example Memory Hierarchy

<1lns 5-10s a
registers -

31 days

1ns on-chip L1
Smaller, cache (SRAM)
faster,
costlier .
er bvte 5-10 ns off-chip L2
perby cache (SRAM)
Larger, 100 ns main memory
slower, (DRAM)
cheaper 154 090 ns SSD
per byte local secondary storage
10,000,000 ns Disk (local disks)
(10 ms)
1-150 ms remote secondary storage
(distributed file systems, web servers)

CSE351, Winter 2020

YA UNIVERSITY of WASHINGTON L17: Caches Il

CSE351, Winter 2020

Memory Hierarchies

+» Some fundamental and enduring properties of
hardware and software systems:

" Faster storage technologies almost always cost more per
byte and have lower capacity

" The gaps between memory technology speeds are widening
- True for: registers <> cache, cache <> DRAM, DRAM < disk, etc.
= Well-written programs tend to exhibit good locality

+» These properties complement each other beautifully
" They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

- For each level k, the faster, smaller device at level k serves as a cache
for the larger, slower device at level k+1

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

An Example Memory Hierarchy

A
registers CPU registers hold words retrieved from L1 cache
on-chip L1
Smaller, cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
faster,
costlier .
off-chip L2
per byte
cache (SRAM) L2 cache holds cache lines retrieved
from main memory
Larger, main memory
(DRAM) Main memory holds disk blocks
slower,) X
retrieved from local disks
cheaper
per byte local secondary storage _ _
| | disk Local disks hold files
(ocal dis S) retrieved from disks on
remote network servers
remote secondary storage
(distributed file systems, web servers)
v

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

An Example Memory Hierarchy

A
explicitly program-controlled
registers (e.g. refer to exactly %rax, %rbx)
on-chip L1
Smaller, SER LA, program sees “memory”;
faster, .
costlier o hardware manages caching
off-chip L2 tr
ansparent|
per byte cache (SRAM) P y
Larger, main memory
slower, (DRAM)
cheaper
per byte local secondary storage
(local disks)

remote secondary storage
(distributed file systems, web servers)

YA UNIVERSITY of WASHINGTON

L17: Caches i

Intel Core i7 Cache Hierarchy

Processor package

L2 unified cache

Core O Core 3
Regs Regs
L1 L1 L1 L1
d-cache| |i-cache d-cache| |i-cache

L2 unified cache

L3 unified cache
(shared by all cores)

Main memory

CSE351, Winter 2020

Block size:
64 bytes for all caches

L1 i-cache and d-cache:
32 KiB, 8-way,
Access: 4 cycles

L2 unified cache:
256 KiB, 8-way,
Access: 11 cycles

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

Making memory accesses fast!

» Cache basics
» Principle of locality
» Memory hierarchies

» Cache organization

= Direct-mapped (sets; index + tag)
= Associativity (ways)

= Replacement policy

*" Handling writes

+» Program optimizations that consider caches

*

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

Note: The textbook
uses “B” for block size

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
= Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

Note: The textbook
uses “b” for offset bits

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
= Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

«» Offset field

" Low-order log,(K) = k bits of address tell you which byte
within a block

- (address) mod 2™ = n lowest bits of address
= (address) modulo (# of bytes in a block)

m — k bits k bits

m-bit address: Block Number Block Offset
(refers to byte in memory)

YA UNIVERSITY of WASHINGTON L17: Caches Il

Polling Question

+ |f we have 6-bit addresses and block size K =4 B,
which block and byte does 0x15 refer to?

= \/ote at: http://pollev.com/rea

Block Num Block Offset

A.

B. 1 5
C. 5

D. 5 5
E.

We're lost...

CSE351, Winter 2020

10

http://pollev.com/rea

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

Cache Organization (2)

+ Cache Size (C): amount of data the $ can store
= Cache can only hold so much data (subset of next level)
= Given in bytes (C) or number of blocks (C /K)
= Example: € =32 KiB =512 blocks if using 64-B blocks

+» Where should data go in the cache?

" We need a mapping from memory addresses to specific
locations in the cache to make checking the cache for an
address fast

+» What is a data structure that provides fast lookup?
= Hash table!

11

YA UNIVERSITY of WASHINGTON L17: Caches Il

Review: Hash Tables for Fast Lookup

Insert:
5

27

34
102
119

Apply hash function to map data
to “buckets”

O O J o O b W DN B+ O

CSE351, Winter 2020

12

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

Place Data in Cache by Hashing Address

Memory Cache
Block Num Block Data Index Block Data
oooo [T T 1 >00 T B
0001 I 01 I | _HereK=4B
0010 b 10 L and C/K =4
0011 L 11 L
0100 T -
0101 L .
0110 Map to cache index from block
| | |
0111 11 1 number
1000 [T T |
1001 [1 " Use nextlog,(C/K) = s bits
1812 —— = (block number) mod (# blocks in
1100 [T 1 cache)
1101 -
1110 L1
1111 R

13

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

Place Data in Cache by Hashing Address

Memory Cache

Block Num Block Data Index Block Data _
0000 f |, | >00 T
0001 111 01 1 1 1 | HereK=48B
0010 N 10 L and C/K =4
0011 | 4 | 11 T .
0100 T
0101 L .
o110 [Map to cache index from block
0111 | | I number
1000 Lo . .
1001 | 1 1 " | ets adjacent blocks fit in cache
1010 1 | simultaneously!
1011 L . . .
1100 L1 - Consecutive blocks go in consecutive
1101 T 1 cache indices
1110 L1
1111 T

14

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

Practice Question

+» 6-bit addresses, block size K =4 B, and our cache
holds S = 4 blocks.

+» A request for address Ox2A results in a cache miss.
Which index does this block get loaded into and
which 3 other addresses are loaded along with it?

"= No voting for this question

15

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

Place Data in Cache by Hashing Address

Memory Cache
Block Num Block Data Index Block Data _
0000 L >00 L
0001 11 01 111 | HereK=48B
0010 L 10 L and C/K =4
0011 L 11 L |
0100 o1
0101 L ..
|
o110 [THTH Collision!
orrrp v v " This might confuse the cache later
1000 Lo
001 when we access the data
| | |
1010 [T ! | = Solution?
1011 oy
1100 11
1101 -
1110 L1
1111 T

16

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

Tags Differentiate Blocks in Same Index

Memory Cache
Block Num Block Data Index Tag Block Data
oooo [T T 1 00 [00 T
0001 1 01 11 | _HereK =4B
0010 11 10 01 111 and C/K =4
0011 L 11 |o1 T 0o .
0100 11
0101 v _ :
o110 [Tag = rest of address bits
oriiy 1t 1 | " fbits=m—s—k
1000 L
1001 I 1 ® Check this during a cache lookup
1010 o
1011 L
1100 10
1101 -
1110 -7
1111 1o

17

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

Checking for a Requested Address

+» CPU sends address request for chunk of data

= Address and requested data are not the same thing!
- Analogy: your friend # their phone number

« T10 address breakdown:
m-bit address: Tag (1) Index (s) | Offset (k)

\ J
Y
Block Number

" Index field tells you where to look in cache
- field lets you check that data is the block you want
= Offset field selects specified start byte within block

" Note: 7 and s sizes will change based on hash function
18

YA UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Winter 2020

Cache Puzzle Vote at http://pollev.com/rea

+ Based on the following behavior, which of the
following block sizes is NOT possible for our cache?

" Cache starts empty, also known as a cold cache

= Access (addr: hit/miss) stream:
« (14: miss), (15: hit), (16: miss)

8 bytes

16 bytes

. 32 bytes
We’re lost...

m o 0O W >

19

http://pollev.com/rea

