YW UNIVERSITY of WASHINGTON

L16: Caches |

Memory & Caches |

CSE 351 Winter 2020

Instructor:
Ruth Anderson

Teaching Assistants:

Jonathan Chen
Justin Johnson
Porter Jones

Josie Lee

Jeffery Tian
Callum Walker
Eddy (Tianyi) Zhou

HEARTBLEED MUST
BE THE \JORST WEB
SECURITY LAPSE EVER.

WORST 50 FAR.
GVE US TIME.

Pr

T MEAN, THIS BUG ISNT

Just BR-‘D’KE:NIIr ENCRYPTION.

IT LETS WEBSITE VISITORS
MAKE. A SERVER DISPENSE

RANDOM MEMORY CONTENTS.

3

CSE351, Winter 2020

IT'9 NOT JUST KEYS.
IT'S TRAFRC DATA.
EMAILS. PASSLIORDS.
EROTIC FANRCTION.

IS EVERYIHING
M&“]}'SED?

WELL, THE ATTACK 1S
UMITED TO DATA SIORED
IN COMPUTER MEMORY.

50 PAPER 15 SAFE.
AND CLAY TP'BLETS.

OUR IMAGINATIONS, ToO.
‘EEE.UELLB‘EFNE

Iy

Alt text: | looked at some of the data dumps from vulnerable sites, and

it was ...

bad. | saw emails, passwords, password hints. SSL keys and

session cookies. Important servers brimming with visitor IPs. Attack
ships on fire off the shoulder of Orion, c-beams glittering in the dark
near the Tannhauser Gate. | should probably patch OpenSSL.

http://xkcd.com/1353/

http://xkcd.com/1513/

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Administrivia
+» hw1l4 due Wednesday (2/19)
+~ Video to watch! Due Wed 2/19

" Goal: shift lecture schedule slightly to give you more time
for Lab5 (an extra weekend!)

= 1-2 videos will be posted to stand in for lecture we are
missing on Monday — watch before lecture on Wed 2/19

+» Lab 3 due next Monday (2/24)
+» Midterm grades coming soon

= Solutions posted on website soon
= Graded exam will be found on Gradescope

= Regrade requests will be open for a short time after grade
release

YA UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Roadmap

C: Java: Memory & data
Integers & floats

car *c = malloc(sizeof (car)); Car c¢c = new Car();
c->miles = 100; c.setMiles (100) ; x86 assembly
c->gals = 17; c.setGals (17); Procedures & stacks
float mpg = get mpg(c); float mpg = Executables
free(c); c.getMPG () ; Arrays & structs
~ & Memory & caches
Assembly c_wfet_mpc_illz1] Processes
. pushqg srbp .
language: movq srsp, $rbp Virtual memory
- Memory allocation
popgq srbp Javavs. C
ret I
\ 4
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111
Computer

system:

YW UNIVERSITY of WASHINGTON

L16: Caches |

Aside: Units and Prefixes

SIZE PREFIXES (10* for Disk, Communication; 2* for Memory)

- |EC prefixes are unambiguously base 2

» Here focusing on large numbers (exponents > 0)
- Note that 103 = 210

+ Sl prefixes are ambiguous if base 10 or 2

SI Size Prefix Symbol | IEC Size Prefix Symbol
103 Kilo- K 210 Kibi- Ki
10° Mega- M 220 Mebi- Mi
10° Giga- G 230 Gibi- Gi
10> Tera- T 240 Tebi- Ti
1015 Peta- P 250 Pebi- Pi
1018 Exa- E 299 Exbi- Ei

1021 Zetta- Z 270 Zebi- Zi
10%4 Yotta- Y 280 Yobi- Yi

CSE351, Winter 2020

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

How to Remember?

+ Will be given to you on Final reference sheet

<« Mnemonics

®" There unfortunately isn’t one well-accepted mnemonic

« But that shouldn’t stop you from trying to come with one!
Killer Mechanical Giraffe Teaches Pet, Extinct Zebra to Yodel

Kirby Missed Ganondorf Terribly, Potentially Exterminating
Zelda and Yoshi

xkcd: Karl Marx Gave The Proletariat Eleven Zeppelins, Yo
. https://xkcd.com/992/

Post your best on Piazza!

https://xkcd.com/992/

YW UNIVERSITY of WASHINGTON L16: Caches!|

int array[SIZE];
int sum = 0;

for (int 1 = 0; 1 < 200000;
for (int 7 = 0; jJ < SIZE;
sum += arrayl[J];

1++)
j++)

{
{

[
»

Plot:

Execution Time

SIZE

CSE351, Winter 2020

How does execution time grow with SIZE?

WA UNIVERSITY of WASHINGTON L16: Caches | CSE351, Winter 2020

Actual Data

45

40

35

30

25

Time

20

15

10

— | 0 2000 4000 6000 8000 10000
SIZE

YW UNIVERSITY of WASHINGTON L16: Caches!|

Making memory accesses fast!

+» Cache basics

+ Principle of locality
+» Memory hierarchies
+ Cache organization

+» Program optimizations that consider caches

CSE351, Winter 2020

CSE351, Winter 2020

YW UNIVERSITY of WASHINGTON L16: Caches!|

Processor-Memory Gap

100,000
“Moore’s Law”
B e e o LPrOC | e e
FOe0 55%/year
(2X/1.5yr) \
8 1000 Y]
5 a
= Processor Processor-Memory
< Performance Gap
) 100 e e o e e o S e R e e e e e O B et B o e e e et o B o O S o i o e o B o O o o i e e B e B
o
10 e e e e e e e e el O LR e o e e e e ot L B D e e e e B e e e e B e e e o o
1 I i I i |
1980 1985 1990 1995 2000 2005
Year DRAM
1989 first Intel CPU with cache on chip 7%/year
1998 Pentium Ill has two cache levels on chip (2X/10yrs)

2010

YA UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Problem: Processor-Memory Bottleneck

Processor performance

doubled about .
every 18 months Bus latency / bandwidth

evolved much slower

Main
CPU | Reg
Memory

Core 2 Duo: Core 2 Duo:
Can process at least Bandwidth
256 Bytes/cycle 2 Bytes/cycle

Latency
100-200 cycles (30-60ns)

Problem: lots of waiting on memory

cycle: single machine step (fixed-time) 10

YA UNIVERSITY of WASHINGTON

L16: Caches |

CSE351, Winter 2020

Problem: Processor-Memory Bottleneck

Processor performance

doubled about
every 18 months

CPU | Reg

Core 2 Duo:
Can process at least
256 Bytes/cycle

Bus latency / bandwidth
evolved much slower

|

Core 2 Duo:

Bandwidth

2 Bytes/cycle

Latency

100-200 cycles (30-60ns)

Solution: caches

cycle: single machine step (fixed-time)

Main
Memory

11

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Cache &

« Pronunciation: “cash”
= \We abbreviate this as “S”

+» English: A hidden storage space
for provisions, weapons, and/or treasures

+» Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/IS) or data (d-cache/DS)

= More generally: Used to optimize data transfers between
any system elements with different characteristics (network
interface cache, 1/0O cache, etc.)

12

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

General Cache Mechanics

* Smaller, faster, more expensive

Cache 7 9 14 3 memory
* Caches a subset of the blocks

Data is copied in block-sized
transfer units

Memory 0 1 2 3 * Larger, slower, cheaper memory.
* Viewed as partitioned into “blocks”
4 5 6 7
8 9 10 11
12 13 14 15

13

YW UNIVERSITY of WASHINGTON

General Cache Concepts: Hit

Cache

Memory

L16: Caches |

Request: 14
7 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

CSE351, Winter 2020

Data in block b is needed

Block b is in cache:
Hit!

Data is returned to CPU

14

YW UNIVERSITY of WASHINGTON

L16: Caches |

CSE351, Winter 2020

General Cache Concepts: Miss

Cache

Memory

Request: 12

7 12 14 3
12 Request: 12

0 1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Data is returned to CPU
15

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Why Caches Work

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

16

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Why Caches Work

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently O

block

+» Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

17

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Why Caches Work

» Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently
+ Temporal locality: block
= Recently referenced items are likely
to be referenced again in the near future ﬂ
+» Spatial locality: block

" |tems with nearby addresses tend
to be referenced close together in time

How do caches take advantage of this?

/
000

18

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Example: Any Locality?

sum = 0;
for (1 =

{

O0; 1 < n; 1++)

sum += alf[i];

}

return sum;

<« Data:

" Temporal: sumreferenced in each iteration

= Spatial: consecutive elements of array a [] accessed

« Instructions:

" Temporal: cycle through loop repeatedly

= Spatial: reference instructions in sequence

19

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Locality Example #1

int sum array rows (int a[M] [N])
{
int i, j, sum = 0;
for (i = 0; i < M; i++)
for (j = 0; j < N; J++)
sum += alil[j];
return sum;
}

20

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Locality Example #1

int sum array rows (int a[M] [N]) M=3,N=4

{ a[o][0]||al[o][1]]||al0][2]||alO][3]
int i, j, sum = 0;

a[1][0]||al1][1]||all](2]||al1l][3]

for (1 = 0; 1 < M; 1i++)
for (j = 0; J < N; j++) a[2][0] |[al2][1]]]al2][2] | |al2][3]

sum += alil[j];

Access Pattern: 1)| a[0] [0]

RS S stride = ? 2)| at0111]

: 3)| al0] [2]
4)1 al0] [3]

Layout in Memory 5)| alll1[0]
a a a a a a a a a a a a 6) a[l] [1]
to1|ro1|rorfrorfrrrfrrfrr|{rrrfr21|r21|r21|r21 Ny altllfz]
[01{r21{r21|c31fro1|rr1fr21fr3rfrorfrrr|r21|r3; 8)| all] [3]
| | | 9) al211(0]
76 92 108 10)l a[2][1]
11)| al2] [2]

Note: 76 is just one possible starting address of array a 12) al2] [3]

21

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Locality Example #2

int sum array cols(int a[M] [N])
{
int i, j, sum = 0;
for (j = 0; J < N; Jj++)
for (1 = 0; 1 < M; 1i++)
sum += alil[j];
return sum;
}

22

YW UNIVERSITY of WASHINGTON

Locality Example #2

L16: Caches| CSE351, Winter 2020

int sum array cols(int a[M] [N])
{
int i, j, sum = 0;
for (j = 0; J < N; Jj++)
for (1 = 0; i < M;
sum += alil[j];
return sum;
}

M = 3, N=4

Access Pattern:
stride =7?

Layout in Memory

=

—_ e P B e B B e P P B
Lo B B B B B B B B B B B B o B B o B B B B B B o B B e |

WIWITWININDINIRPIRPIR]IO|O] O

NIFRJIOINIRIOINDIFRIOINIR]O

N P O W 0 J o U b w N
AU [NOORN (ST INOPR ROPRY VRN (TR RGN INCPRY OVRY OIRN QY

[

YW UNIVERSITY of WASHINGTON

L16: Caches |

Locality Example #3

int sum array 3D(int a[M] [N][L])
{

k, sum 0;

int i, 7, =

(1 = 0; 1 < N; 1i++)

for (J = 0;] < L; 3++)
for (k = 0;

for

return sum;

k < M; k++)
sum += alk][i]1[3];

a[2][0][0]

a[2][0][1]

a[2][0][2]

a[2]1[0][3]

a[11[0][0]

Ha[11[0][1]

a[1]1[0][21Ha[11[0]1[3]

a[0][0][0]

Hal01[0][1]

Inl

a[0][0][2]

Inl

1
|

a[0][0][3]

IL-II_IO-IJ-IIJ-][B]

z1= | [3]

[Es e

IVIHTS] LT L

1
|

ESINE=IESIEs

a[0][1][0]

HalOl[1][1]

a[0][1][2]

a[0][1][3]

1< 11 IO-lJ-JIL][B]

z1z (3]

4] L] &

IVIIIA] L&

ILI TS L&

CSE351, Winter 2020

+» What is wrong

with this code?

+ How can it be

fixed?

€«<—m-= 2

€«<—m=1

| — [nl

| — [nl

a[0][2][0]

|alol(2][1]

a[0][2][2]

a[0][2][3]

«<—m=0

24

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Locality Example #3

int sum array 3D(int a[M][N] [L]) « What is wrong
{ *

int i, j, k, sum = 0; with this code?

for (i = 0; i < N; i++)

for (j = 0; j < L; Jj++)
for (k = 0; k < M; k++) | <« How can it be
sum += alk][1]1[J]; .
fixed?

return sum;

}

Layout in Memory (M =?,N =3, L=4)

a a
(0] [o]} [o]] [o]([o]| (o]} (o] [o]|[0]}[0]}[O] (O] (1]} (L] { (]| 2]} 1] | (2] (2] (2]} 1] { 2] {[2]][L]
(o] {[OT} (O} | (o] | (2] [21] (11| (2] (2]} (2]} (2] (2] (O] | [O]{ (O] | [OF| (1] | (1] {[2]| (1]} [2]{[2]|[2]][2]
(o] [(a1 (21| (31| (O] | (21} (21| (3] [OT | (1]} (2] { (3T [O1] [11{ (21| 3]} (O] [1]{[2]| (31} (O] [2]|[2]][3]

1 1 | 1 1 | |

76 92 108 124 140 156 172

25

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Cache Performance Metrics

+» Huge difference between a cache hit and a cache miss

" Could be 100x speed difference between accessing cache
and main memory (measured in clock cycles)

% Miss Rate (MR)

" Fraction of memory references not found in cache (misses /
accesses) = 1 - Hit Rate

% Hit Time (HT)

®" Time to deliver a block in the cache to the processor

« Includes time to determine whether the block is in the cache

» Miss Penalty (MP)

= Additional time required because of a miss

26

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Cache Performance

+» Two things hurt the performance of a cache:
= Miss rate and miss penalty

+ Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses
AMAT = Hit time + Miss rate x Miss penalty
(abbreviated AMAT = HT + MR x MP)

+» 99% hit rate twice as good as 97% hit rate!
= Assume HT of 1 clock cycle and MP of 100 clock cycles
"= 97%: AMAT =
" 99%: AMAT =

27

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Polling Question

+ Processor specs: 200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT =

«» Which improvement would be best?
= Vote at http://PollEv.com/rea

A.

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

28

http://pollev.com/rea

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Can we have more than one cache?

+» Why would we want to do that?
= Avoid going to memory!
+ Typical performance numbers:
" Miss Rate
« L1 MR =3-10%
- L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.
" Hit Time
« L1 HT =4 clock cycles
« L2 HT =10 clock cycles

= Miss Penalty
- P =50-200 cycles for missing in L2 & going to main memory
- Trend: increasing!

29

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Winter 2020

Summary

+» Memory Hierarchy

= Successively higher levels contain “most used” data from
lower levels

= Exploits temporal and spatial locality

= Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

+ Cache Performance
" |deal case: found in cache (hit)
" Bad case: not found in cache (miss), search in next level

= Average Memory Access Time (AMAT) = HT + MR x MP
- Hurt by Miss Rate and Miss Penalty

30

