Administrivia

- hw6 due Friday, hw7 due Monday
- Lab 1a due last night. Lates accepted until Thurs.
- Lab 1b due Monday (1/27)
 - Submit bits.c and lab1Breflect.txt
- Section tomorrow on Integers and Floating Point
Other Special Cases

- $E = 0xFF$, $M = 0$: $\pm \infty$
 - e.g. division by 0
 - Still work in comparisons!

- $E = 0xFF$, $M \neq 0$: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging

- New largest value (besides ∞)?
 - $E = 0xFF$ has now been taken!
 - $E = 0xFE$ has largest: $1.1...1_2 \times 2^{127} = 2^{128} - 2^{104}$
Floating Point Encoding Summary

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Floating Point Interpretation Flow Chart

FP Bits

What is the value of E?

all 0’s

all 1’s

What is the value of M?

anything else

all 0’s

anything else

(-1)^S \times \infty

NaN

(-1)^S \times 0. M \times 2^{1-bias}

(-1)^S \times 1. M \times 2^{E-bias}

= special case
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
- It’s a 58-page standard...
Tiny Floating Point Representation

- We will use the following **8-bit** floating point representation to illustrate some key points:

 ![8-bit Floating Point Representation Diagram]

 - S (sign) = 1
 - E (exponent) = 4
 - M (mantissa) = 3

- Assume that it has the same properties as IEEE floating point:
 - **bias** =
 - **encoding of** \(-0\) =
 - **encoding of** \(+\infty\) =
 - **encoding of the largest (+) normalized #** =
 - **encoding of the smallest (+) normalized #** =
Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity: **Overflow** (Exp too large)
 - Between zero and smallest denorm: **Underflow** (Exp too small)
 - Between norm numbers?: **Rounding**

- Given a FP number, what’s the bit pattern of the next largest representable number?
 - What is this “step” when Exp = 0?
 - What is this “step” when Exp = 100?

- Distribution of values is denser toward zero
Floating Point Rounding

- The IEEE 754 standard actually specifies different rounding modes:
 - Round to nearest, ties to nearest even digit
 - Round toward $+\infty$ (round up)
 - Round toward $-\infty$ (round down)
 - Round toward 0 (truncation)

- In our tiny example:
 - Man $= 1.001\ 01$ rounded to $M = 0b001$
 - Man $= 1.001\ 11$ rounded to $M = 0b010$
 - Man $= 1.001\ 10$ rounded to $M = 0b010$

This is extra (non-testable) material
Floating Point Operations: Basic Idea

Value = \((-1)^S \times \text{Mantissa} \times 2^{\text{Exponent}}\)

- \(x +_f y = \text{Round}(x + y)\)
- \(x \times_f y = \text{Round}(x \times y)\)

Basic idea for floating point operations:

- First, compute the exact result
- Then *round* the result to make it fit into the specified precision (width of \(M\))
 - Possibly over/underflow if exponent outside of range
Mathematical Properties of FP Operations

- **Overflow** yields $\pm\infty$ and **underflow** yields 0
- Floats with value $\pm\infty$ and NaN can be used in operations
 - Result usually still $\pm\infty$ or NaN, but not always intuitive
- Floating point operations do not work like real math, due to **rounding**
 - Not associative: $(3.14+1e100)-1e100 \neq 3.14+(1e100-1e100)$
 - $0 \neq 3.14$
 - Not distributive: $100\times(0.1+0.2) \neq 100\times0.1+100\times0.2$
 - $30.00000000000003553 \neq 30$
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing
Limits of Interest

The following thresholds will help give you a sense of when certain outcomes come into play, but don’t worry about the specifics:

- **FOver** = $2^{\text{bias}+1} = 2^8$
 - This is just larger than the largest representable normalized number

- **FDenorm** = $2^{1-\text{bias}} = 2^{-6}$
 - This is the smallest representable normalized number

- **FUnder** = $2^{1-\text{bias}-m} = 2^{-9}$
 - m is the width of the mantissa field
 - This is the smallest representable denormalized number

This is extra (non-testable) material
Floating Point Encoding Flow Chart

Value \(v \) to encode

Is \(v \) not a number?

Yes

\[\text{NaN} \]
\[E = \text{all 1's} \]
\[M \neq \text{all 0's} \]

No

Is \(|v| \), when rounded, \(\geq F\text{Over} \)?

Yes

\[\pm \infty \]
\[E = \text{all 1's} \]
\[M = \text{all 0's} \]

No

Is \(v \), when rounded, \(\geq F\text{Denorm} \)?

Yes

\[\pm 0 \]
\[E = \text{all 0's} \]
\[M = \text{all 0's} \]

No

Is \(|v| \), when rounded, \(< F\text{Under} \)?

Yes

Denormed
\[E = \text{all 0's} \]
\[0.M = \text{Man} \]

No

Normed
\[E = \text{Exp + bias} \]
\[1.M = \text{Man} \]

= special case
Example Question

- Using our 8-bit representation, what value gets stored when we try to encode $384 = 2^8 + 2^7$?

 - No voting

 A. $+256$
 B. $+384$
 C. $+\infty$
 D. NaN
 E. We’re lost...
Polling Question

Using our 8-bit representation, what value gets stored when we try to encode 2.625 = 2^1 + 2^{-1} + 2^{-3}?

- Vote at http://pollev.com/rea

A. + 2.5
B. + 2.625
C. + 2.75
D. + 3.25
E. We’re lost...
Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point in C

- Two common levels of precision:
 - float 1.0f single precision (32-bit)
 - double 1.0 double precision (64-bit)

- `#include <math.h>` to get INFINITY and NAN constants

- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!
Floating Point Conversions in C

- **Casting between int, float, and double changes the bit representation**

 - **int → float**
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - **int or float → double**
 - Exact conversion (all 32-bit ints representable)
 - **long → double**
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - **double or float → int**
 - Truncates fractional part (rounded toward zero)
 - “Not defined” when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)
Polling Question

- We execute the following code in C. How many bytes are the same (value and position) between \(i \) and \(f \)?
 - Vote at http://pollev.com/rea

```
int i = 384;  // 2^8 + 2^7
float f = (float) i;
```

A. 0 bytes
B. 1 byte
C. 2 bytes
D. 3 bytes
E. We’re lost...
#include <stdio.h>

int main(int argc, char* argv[]) {
 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i = 0; i < 10; i++)
 f2 += 1.0/10.0;

 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %10.9f\n", f1);
 printf("f2 = %10.9f\n\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;
}
Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - “Gaps” produced in representable numbers means we can lose precision, unlike ints
 - Some “simple fractions” have no exact representation (e.g. 0.2)
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Number Representation Really Matters

- **1991:** Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- **1996:** Ariane 5 rocket exploded ($1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- **2000:** Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- **2038:** Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038
- **Other related bugs:**
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
Summary

- Floating point encoding has many limitations
 - Overflow, underflow, rounding
 - Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
 - Floating point arithmetic is NOT associative or distributive
- Converting between integral and floating point data types *does* change the bits

<table>
<thead>
<tr>
<th>E</th>
<th>M</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>