Floating Point II

CSE 351 Winter 2020

Instructor: Teaching Assistants:

Ruth Anderson Jonathan Chen

Jonathan Chen

Josie Lee

Eddy (Tianyi) Zhou

Justin Johnson Porter Jones
Jeffery Tian Callum Walker

Administrivia

- hw6 due Friday, hw7 due Monday
- Lab 1a due last night. Lates accepted until Thurs.
- Lab 1b due Monday (1/27)
 - Submit bits.c and lab1Breflect.txt
- Section tomorrow on Integers and Floating Point

Other Special Cases

- \star E = 0xFF, M = 0: $\pm \infty$
- e.g. division by 0
 - Still work in comparisons!
 - \bullet E = 0xFF, M ≠ 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging (tells you cause of NaN)
 - New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - E = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$

Floating Point Encoding Summary

	E	M	Meaning
smallest E { (all 0's)	0x00	0	± 0
	0x00	non-zero	± denorm num
everything { else	0x01 – 0xFE	anything	± norm num
	OxFF	0	± ∞
largest E) (all 1's)	OxFF	non-zero	NaN

Floating Point Interpretation Flow Chart

= special case

Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

CSE351, Winter 2020

Tiny Floating Point Representation

• We will use the following 8-bit floating point representation to illustrate some key points:

- Assume that it has the same properties as IEEE floating point:
 - bias = $2^{\omega-1}-1=2^{4-1}-1=7$
 - encoding of -0 = 0 1 $000 00 = 0 \times 80$ encoding of $+\infty = 0$ 0 11/1 $000 = 0 \times 78$

 - encoding of $+\infty = 0$ b 0 $11\sqrt{1}$ $000 = 0 \times 78$ encoding of the largest (+) normalized # = 0 b 0 $111\sqrt{0}$ $111 = 0 \times 77$

Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity Overflow (Exp too large)
 - Between zero and smallest denorm Underflow (Exp too small)
 - Between norm numbers? Rounding
- ♣ Given a FP number, what's the bit pattern of the next largest representable number? If M = 050...00, then $2^{E_{VP}} \times 1.0$ $2^{E_{VP}} \times 1.0$ What is this "step" when Exp = 0? 2^{-23}
 - What is this "step" when Exp = 100?
 2⁷⁷
- Distribution of values is denser toward zero

Floating Point Rounding

This is extra (non-testable) material

- The IEEE 754 standard actually specifies different rounding modes:
 - Round to nearest, ties to nearest even digit
 - Round toward +∞ (round up)
 - Round toward $-\infty$ (round down)
 - Round toward 0 (truncation)
- In our tiny example:

- Man = 1.001/01 rounded to M = 0b001
- Man = 1.001/11 rounded to M = 0b010 ($\mu\rho$)
- Man = 1.001/10 rounded to M = 0b010 (up)

 Man = 1.000/10 rounded to M = 0b000 (down)

Floating Point Operations: Basic Idea

Value = $(-1)^{S} \times Mantissa \times 2^{Exponent}$

$$*x +_f y = Round(x + y)$$

$$* x *_{f} y = Round(x * y)$$

- Basic idea for floating point operations:
 - First, compute the exact result
 - Then round the result to make it fit into the specified precision (width of M)
 - Possibly over/underflow if exponent outside of range

Mathematical Properties of FP Operations

- * Overflow yields $\pm \infty$ and underflow yields 0
- ❖ Floats with value ±∞ and NaN can be used in operations
 - Result usually still $\pm \infty$ or NaN, but not always intuitive
- ❖ Floating point operations do not work like real math, due to rounding
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 □
 - Not associative: (3.14+1e100)-1e100 != 3.14+(1e100-1e100)
 3.14
 - Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing

Limits of Interest

This is extra (non-testable) material

- The following thresholds will help give you a sense of when certain outcomes come into play, but don't worry about the specifics:
 - **FOver** = $2^{\text{bias}+1} = 2^8$
 - This is just larger than the largest representable normalized number
 - **FDenorm** = $2^{1-\text{bias}} = 2^{-6}$
 - This is the smallest representable normalized number
 - FUnder = $2^{1-\text{bias}-m} = 2^{-9}$
 - m is the width of the mantissa field
 - This is the smallest representable denormalized number

Floating Point Encoding Flow Chart

Example Question

* Using our **8-bit** representation, what value gets stored when we try to encode **384** = $2^8 + 2^7$? = $2^8 (1 + 2^4)$

S	E	M
1	4	3

No voting

$$A. + 256$$

$$B. + 384$$

- D. NaN
- E. We're lost...

$$S=0$$

$$E = Exp + bias$$

$$= 8 + 7 = 15$$

$$= 0 b 1111$$
This falls outside of the

this falls outside of the normalized exponent range.

Polling Question

* Using our **8-bit** representation, what value gets stored when we try to encode **2.625** = $2^1 + 2^{-1} + 2^{-3}$?

 $= 2^{1} \left(1 + 2^{2} + 2^{-4} \right)$ $= 2^{1} \times 1.0101_{2}$

Vote at http://pollev.com/rea

$$B. + 2.625$$

$$C. + 2.75$$

$$D. + 3.25$$

E. We're lost...

$$S = O$$

$$E = Exp + bias$$

$$= 1 + 7 = 8$$

$$= Ob 1000$$

$$M = Ob O10/1$$

$$Can only store
$$3 bits!$$$$

Floating point topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Floating Point in C

Two common levels of precision:

float	1.0f	single precision (32-bit)
double	1.0	double precision (64-bit)

- * #include <math.h> to get INFINITY and NAN constants <float.h> for additional constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results, so just avoid them!

Floating Point Conversions in C

- Casting between int, float, and double changes
 the bit representation
 - int → float
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - int or float → double
 - Exact conversion (all 32-bit ints representable)
 - long → double
 - Depends on word size (32-bit is exact, 64-bit may be rounded)
 - double or float → int
 - Truncates fractional part (rounded toward zero)
 - "Not defined" when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)

Polling Question

E. We're lost...

- ❖ We execute the following code in C. How many bytes are the same (value and position) between i and f?
 - Vote at http://pollev.com/rea

```
int i = 384; // 2^8 + 2^7 = 06 1/000/0000

float f = (float) i;

A. 0 bytes

B. 1 byte

C. 2 bytes

i shored as 0 \times 00 \times 00 \times 1000 \times 10000 \times 1000 \times 10000 \times 1000 \times 10000 \times 10000 \times 1000 \times 10000 \times 1000 \times 10000 \times 10000
```

f stored as 0x 43 CO 00 00

Floating Point and the Programmer

 $1.0 \times 2^{\circ} \longrightarrow 5=0$, E = 0111 1111, M= 0...0 f1 = 060/011 | 1111 /000 0000 0000 0000 = 0x3F8000000#include <stdio.h> \$./a.out int main(int argc, char* argv[]) { 0x3f800000 0x3f80000float f1 = 1.0; specify float constant float f2 = 0.0; f1 = 1.000000000f2 = 1.000000119int i; for (i = 0; i < 10; i++)f1 == f3? yesf2 += 1.0/10.0; f_{2} should == $10 \times \frac{1}{10} = 1$ printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2); printf(" $f1 = %10.9f\n$ ", f1); printf(" $f2 = %10.9f \n\n$ ", f2); (see float.c) $f1 = 1E30; 10^{30}$ $f2 = 1E-30; 10^{-30}$ float f3 = f1 + f2; $printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");$ $|Q_{30}| = = |Q_{30}| + |Q_{-30}|$ return 0;

Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow
 - "Gaps" produced in representable numbers means we can lose precision, unlike ints
 - Some "simple fractions" have no exact representation (e.g. 0.2)
 - "Every operation gets a slightly wrong result"
- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Number Representation Really Matters

- 1991: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded (\$1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
 - **2000:** Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038
- Other related bugs:
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
 - 1997: USS Yorktown "smart" warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Summary

E	M	Meaning
0x00	0	± 0
0x00	non-zero	± denorm num
0x01 – 0xFE	anything	± norm num
0xFF	0	± ∞
0xFF	non-zero	NaN

- Floating point encoding has many limitations
 - Overflow, underflow, rounding
 - Rounding is a HUGE issue due to limited mantissa bits and gaps that are scaled by the value of the exponent
 - Floating point arithmetic is NOT associative or distributive
- Converting between integral and floating point data types does change the bits