Floating Point I
CSE 351 Winter 2020

Instructor: Ruth Anderson
Teaching Assistants: Jonathan Chen, Josie Lee, Eddy (Tianyi) Zhou, Justin Johnson, Jeffery Tian, Porter Jones, Callum Walker

http://xkcd.com/571/
Administrivia

- Lab 1a due tonight Tues 1/21 at 11:59 pm
 - Submit `pointer.c` and `lab1Areflect.txt`
 - Make sure you submit *something* before the deadline and that the file names are correct

- hw5 due Wednesday, hw6 due Friday

- Lab 1b due next Monday (1/27)
 - Submit `bits.c` and `lab1Breflect.txt`
Unsigned Multiplication in C

Operands:

- \(u \):
 \[
 \begin{array}{cccccccc}
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \end{array}
 \]

- \(v \):
 \[
 \begin{array}{cccccccc}
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \end{array}
 \]

True Product:

\[u \cdot v \]

Discard \(w \) bits:

- \(u \cdot v \):
 \[
 \begin{array}{cccccccc}
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \end{array}
 \]

- \(\text{UMult}_w(u, v) \):
 \[
 \begin{array}{cccccccc}
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \cdot & \cdot & \cdot & & & & & \\
 \end{array}
 \]

- Standard Multiplication Function
 - Ignores high order \(w \) bits

- Implements Modular Arithmetic
 - \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)
Multiplication with shift and add

- **Operation** \(u << k \) gives \(u \times 2^k \)
 - Both signed and unsigned

Operands: \(w \) bits

- **True Product:** \(w + k \) bits
 - \(u \times 2^k \)

- **Discard** \(k \) bits: \(w \) bits

Examples:

- \(u << 3 \) \(\equiv \) \(u \times 8 \)
- \(u << 5 \) - \(u << 3 \) \(\equiv \) \(u \times 24 \)

- Most machines shift and add faster than multiply
 - *Compiler generates this code automatically*
Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses

- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^{23})
 - Very small numbers (e.g. 6.626×10^{-34})
 - Special numbers (e.g. \(\infty \), NaN)
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - “Gaps” produced in representable numbers means we can lose precision, unlike ints
 - Some “simple fractions” have no exact representation (e.g. 0.2)
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation: \[xx.yyyy \]

- Example: \[10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10} \]
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

- In this 6-bit representation:
 - What is the encoding and value of the smallest (most negative) number?
 - What is the encoding and value of the largest (most positive) number?
 - What is the smallest number greater than 2 that we can represent?
Fractional Binary Numbers

- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number:
 \[
 \sum_{k=-j}^{i} b_k \cdot 2^k
 \]
Fractional Binary Numbers

- **Value**
 - 5 and 3/4: 101.11_2
 - 2 and 7/8: 10.111_2
 - 47/64: 0.10111_2

- **Observations**
 - Shift left = multiply by power of 2
 - Shift right = divide by power of 2
 - Numbers of the form $0.111111\ldots_2$ are just below 1.0
 - $1/2 + 1/4 + 1/8 + \ldots + 1/2^i + \ldots \rightarrow 1.0$
 - Use notation $1.0 - \varepsilon$
Limits of Representation

- Limitations:
 - Even given an arbitrary number of bits, can only **exactly** represent numbers of the form $x \times 2^y$ (y can be negative)
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Representation:</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/3$</td>
<td>0.33333...$_{10}$</td>
</tr>
<tr>
<td>$1/5$</td>
<td>0.001100110011[0011]...$_2$</td>
</tr>
<tr>
<td>$1/10$</td>
<td>0.0001100110011[0011]...$_2$</td>
</tr>
</tbody>
</table>
Fixed Point Representation

- Implied binary point. Two example schemes:
 - #1: the binary point is between bits 2 and 3
 \[b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ [. \ b_2 \ b_1 \ b_0 \]
 - #2: the binary point is between bits 4 and 5
 \[b_7 \ b_6 \ b_5 \ [. \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \]

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have

- Fixed point = fixed *range* and fixed *precision*
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

- Hard to pick how much you need of each!
Floating Point Representation

- Analogous to scientific notation
 - In Decimal:
 - Not 12000000, but 1.2 \times 10^7 \quad \text{In C: 1.2e7}
 - Not 0.0000012, but 1.2 \times 10^{-6} \quad \text{In C: 1.2e-6}
 - In Binary:
 - Not 11000.000, but 1.1 \times 2^4
 - Not 0.000101, but 1.01 \times 2^{-4}

- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the mantissa (significand)
 - the exponent
Scientific Notation (Decimal)

- **Normalized form**: exactly one digit (non-zero) to left of decimal point

- Alternatives to representing $1/1,000,000,000$
 - Normalized: 1.0×10^{-9}
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$
Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the “floating” of the binary point
 - Declare such variable in C as `float` (or `double`)
Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$

- Convert from binary point to *normalized* scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$

- **Practice:** Convert 11.375_{10} to normalized binary scientific notation
Floating Point Topics

- Fractional binary numbers
- **IEEE floating-point standard**
- Floating-point operations and rounding
- Floating-point in C

There are many more details that we won’t cover
 - It’s a 58-page standard...
IEEE Floating Point

- IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops
Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: $\pm 1 \times \text{Mantissa} \times 2^{\text{Exponent}}$
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-\text{bias})}$

- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E
The Exponent Field

- **Use biased notation**
 - Read exponent as unsigned, but with bias of $2^{w-1}-1 = 127$
 - Representable exponents roughly $\frac{1}{2}$ positive and $\frac{1}{2}$ negative
 - Exponent 0 ($\text{Exp} = 0$) is represented as $E = 0b\ 0111\ 1111$

- **Why biased?**
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two’s complement

- **Practice:** To encode in biased notation, add the bias then encode in unsigned:
 - $\text{Exp} = 1 \rightarrow \rightarrow E = 0b$
 - $\text{Exp} = 127 \rightarrow \rightarrow E = 0b$
 - $\text{Exp} = -63 \rightarrow \rightarrow E = 0b$
The Mantissa (Fraction) Field

\[(-1)^S \times (1 \cdot M) \times 2^{(E - \text{bias})} \]

- Note the implicit 1 in front of the M bit vector
 - Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000 is read as 1.1_2 = 1.5_{10}, not 0.1_2 = 0.5_{10}
 - Gives us an extra bit of precision

- Mantissa “limits”
 - Low values near \(M = 0b0\ldots0 \) are close to \(2^{\text{Exp}} \)
 - High values near \(M = 0b1\ldots1 \) are close to \(2^{\text{Exp}+1} \)
Polling Question

- What is the correct value encoded by the following floating point number?
 - 0b 0 10000000 11000000000000000000000

- Vote at http://pollev.com/rea

A. + 0.75
B. + 1.5
C. + 2.75
D. + 3.5
E. We’re lost...
Normalized Floating Point Conversions

- **FP → Decimal**
 1. Append the bits of M to implicit leading 1 to form the mantissa.
 2. Multiply the mantissa by $2^{E - \text{bias}}$.
 3. Multiply the sign $(-1)^S$.
 4. Multiply out the exponent by shifting the binary point.
 5. Convert from binary to decimal.

- **Decimal → FP**
 1. Convert decimal to binary.
 2. Convert binary to normalized scientific notation.
 3. Encode sign as S (0/1).
 4. Add the bias to exponent and encode E as unsigned.
 5. The first bits after the leading 1 that fit are encoded into M.
Precision and Accuracy

- **Precision** is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy

- **Accuracy** is a measure of the difference between the actual value of a number and its computer representation
 - *High precision permits high accuracy but doesn’t guarantee it. It is possible to have high precision but low accuracy.*
 - **Example:** `float pi = 3.14;`
 - *pi* will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)
Need Greater Precision?

- **Double Precision** (vs. Single Precision) in 64 bits

- C variable declared as `double`
- Exponent bias is now $2^{10} - 1 = 1023$
- **Advantages:** greater precision (larger mantissa), greater range (larger exponent)
- **Disadvantages:** more bits used, slower to manipulate
Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding $0x00000000 = 0$
 - Special case: E and M all zeros = 0
 - Two zeros! But at least $0x00000000 = 0$ like integers

- New numbers closest to 0:
 - $a = 1.0...0_2 \times 2^{-126} = 2^{-126}$
 - $b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$
 - Normalization and implicit 1 are to blame
 - Special case: $E = 0$, $M \neq 0$ are denormalized numbers
Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of \(-126\) even though \(E = 0x00\)

- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: \(\pm 1.0...0\text{two}_2 \times 2^{-126} = \pm 2^{-126}\)
 - Smallest denorm: \(\pm 0.0...01\text{two}_2 \times 2^{-126} = \pm 2^{-149}\)
 - There is still a gap between zero and the smallest denormalized number
Summary

- Floating point approximates real numbers:
 - Handles large numbers, small numbers, special numbers
 - Exponent in biased notation (bias = $2^{w-1}-1$)
 - Size of exponent field determines our representable range
 - Outside of representable exponents is overflow and underflow
 - Mantissa approximates fractional portion of binary point
 - Size of mantissa field determines our representable precision
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding
An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don’t need to read these, the information is “fair game.”
Tiny Floating Point Example

8-bit Floating Point Representation
- The sign bit is in the most significant bit (MSB)
- The next four bits are the exponent, with a bias of $2^{4-1} - 1 = 7$
- The last three bits are the mantissa

Same general form as IEEE Format
- Normalized binary scientific point notation
- Similar special cases for 0, denormalized numbers, NaN, ∞
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>S E</th>
<th>M</th>
<th>Exp</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0 0000 001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
<td>closest to zero</td>
</tr>
<tr>
<td>0 0000 010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
<td>largest denorm</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0000 110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
<td>smallest norm</td>
</tr>
<tr>
<td>0 0000 111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
<td></td>
</tr>
<tr>
<td>0 0001 000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
<td></td>
</tr>
<tr>
<td>0 0001 001</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 0110 110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
<td>closest to 1 below</td>
</tr>
<tr>
<td>0 0110 111</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
<td>closest to 1 above</td>
</tr>
<tr>
<td>0 0111 000</td>
<td>0</td>
<td>8/8*1 = 1</td>
<td></td>
</tr>
<tr>
<td>0 0111 001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
<td></td>
</tr>
<tr>
<td>0 0111 010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1110 110</td>
<td>7</td>
<td>14/8*128 = 224</td>
<td>largest norm</td>
</tr>
<tr>
<td>0 1110 111</td>
<td>7</td>
<td>15/8*128 = 240</td>
<td></td>
</tr>
<tr>
<td>0 1111 000</td>
<td>n/a</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- Floating point zero \((0^+)\) exactly the same bits as integer zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider \(0^- = 0^+ = 0\)
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity