Floating Point I

CSE 351 Winter 2020

Teaching Assistants:

Ruth Anderson

Instructor:

Jonathan Chen Josie Lee Eddy (Tianyi) Zhou Justin Johnson Jeffery Tian Porter Jones Callum Walker

http://xkcd.com/571/

Administrivia

- Lab 1a due tonight Tues 1/21 at 11:59 pm
 - Submit pointer.c and lab1Areflect.txt
 - Make sure you submit *something* before the deadline and that the file names are correct
- hw5 due Wednesday, hw6 due Friday
- Lab 1b due next Monday (1/27)
 - Submit bits.c and lab1Breflect.txt

Unsigned Multiplication in C

Operands: w bits				u * V	T		••		
True Product: 2w bits	u · v		• • •		Τ	•	••		
Discard w bits: w bits			UMul	$\mathbf{t}_{w}(u, v)$		•	• •		

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic
 - $UMult_w(u, v) = u \cdot v \mod 2^w$

Multiplication with shift and add

- ✤ Operation u<<k gives u*2^k
 - Both signed and unsigned

Examples:

- u<<3 == u * 8
- u<<5 u<<3 == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses
- How do we encode the following:
 - Real numbers (*e.g.* 3.14159)
 - Very large numbers (*e.g.* 6.02×10²³)
 - Very small numbers (*e.g.* 6.626×10⁻³⁴)
 - Special numbers (e.g. ∞, NaN)

Floating Point
Point

Floating Point Topics

- * Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - "Gaps" produced in representable numbers means we can lose precision, unlike ints
 - Some "simple fractions" have no exact representation (*e.g.* 0.2)
 - "Every operation gets a slightly wrong result"
- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Representation of Fractions

 "Binary Point," like decimal point, signifies boundary between integer and fractional parts:

* Example: $10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}$

Representation of Fractions

 "Binary Point," like decimal point, signifies boundary between integer and fractional parts:

- In this 6-bit representation:
 - What is the encoding and value of the smallest (most negative) number?
 - What is the encoding and value of the largest (most positive) number?
 - What is the smallest number greater than 2 that we can represent?

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \cdot 2^k$$

Fractional Binary Numbers

- Value Representation
 - 5 and 3/4 101.11₂
 - 2 and 7/8 10.111₂
 - 47/64
 0.101111₂

Observations

- Shift left = multiply by power of 2
- Shift right = divide by power of 2
- Numbers of the form 0.111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Limits of Representation

Limitations:

- Even given an arbitrary number of bits, can only <u>exactly</u> represent numbers of the form x * 2^y (y can be negative)
- Other rational numbers have repeating bit representations

Value: Binary Representation:

- $1/3 = 0.333333..._{10} = 0.01010101[01]..._{2}$
- $1/5 = 0.001100110011[0011]..._2$
- 1/10 = 0.000110011[0011]...₂

Fixed Point Representation

- Implied binary point. Two example schemes:
 - #1: the binary point is between bits 2 and 3 $b_7 b_6 b_5 b_4 b_3$ [.] $b_2 b_1 b_0$

#2: the binary point is between bits 4 and 5 $b_7 b_6 b_5$ [.] $b_4 b_3 b_2 b_1 b_0$

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have
- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
- Hard to pick how much you need of each!

Floating Point Representation

- Analogous to scientific notation
 - In Decimal:
 - Not 12000000, but 1.2 x 10⁷ In C: 1.2e7
 - Not 0.0000012, but 1.2 x 10⁻⁶ In C: 1.2e-6
 - In Binary:
 - Not 11000.000, but 1.1 x 2⁴
 - Not 0.000101, but 1.01 x 2⁻⁴
- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the mantissa (significand)
 - the exponent

Scientific Notation (Decimal)

- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0×10⁻⁹
 Not normalized: 0.1×10⁻⁸,10.0×10⁻¹⁰

Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float (or double)

Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$
- Convert from binary point to *normalized* scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - <u>Example</u>: $1101.001_2 = 1.101001_2 \times 2^3$
- Practice: Convert 11.375₁₀ to normalized binary scientific notation

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

IEEE Floating Point

- ✤ IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs
- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: ±1 × Mantissa × 2^{Exponent}
 - Bit Fields: $(-1)^{S} \times 1.M \times 2^{(E-bias)}$
- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E

The Exponent Field

- Use biased notation
 - Read exponent as unsigned, but with bias of 2^{w-1}-1 = 127
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement
- Practice: To encode in biased notation, add the bias then encode in unsigned:
 - $Exp = 1 \rightarrow E = 0b$
 - $Exp = 127 \rightarrow E = 0b$
 - $Exp = -63 \rightarrow E = 0b$

The Mantissa (Fraction) Field

$$(-1)^{S} \times (1.M) \times 2^{(E-bias)}$$

- Note the implicit 1 in front of the M bit vector

 - Gives us an extra bit of precision
- Mantissa "limits"
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}

Polling Question

- What is the correct value encoded by the following floating point number?

 - Vote at <u>http://pollev.com/rea</u>
 - A. + 0.75
 - **B.** + 1.5
 - **C.** + 2.75
 - D. + 3.5
 - E. We're lost...

Normalized Floating Point Conversions

- ♦ FP → Decimal
 - Append the bits of M to implicit leading 1 to form the mantissa.
 - 2. Multiply the mantissa by 2^{E-bias} .
 - 3. Multiply the sign $(-1)^{S}$.
 - Multiply out the exponent by shifting the binary point.
 - 5. Convert from binary to decimal.

- ♦ Decimal → FP
 - Convert decimal to binary.
 - Convert binary to normalized scientific notation.
 - **3.** Encode sign as S (0/1).
 - 4. Add the bias to exponent and encode E as unsigned.
 - 5. The first bits after the leading 1 that fit are encoded into M.

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
 - Example: float pi = 3.14;
 - pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now 2¹⁰-1 = 1023
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding 0x0000000 =
 - Special case: E and M all zeros = 0
 - Two zeros! But at least 0x0000000 = 0 like integers
- New numbers closest to 0:
 - $a = 1.0...0_2 \times 2^{-126} = 2^{-126}$
 - $b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$

- Normalization and implicit 1 are to blame
- Special case: E = 0, M ≠ 0 are denormalized numbers

Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$

So much closer to 0

- Smallest denorm: ± 0.0...01_{two}×2⁻¹²⁶ = ± 2⁻¹⁴⁹
 - There is still a gap between zero and the smallest denormalized number

Summary

Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = 2^{w-1}-1)
 - Size of exponent field determines our representable range
 - Outside of representable exponents is *overflow* and *underflow*
- Mantissa approximates fractional portion of binary point
 - Size of mantissa field determines our representable *precision*
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes *rounding*

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of 2⁴⁻¹—1 = 7
 - The last three bits are the mantissa
- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	SE	Μ	Exp	Value	
		000	-6	0	
	0 0 0 0	001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 0 0 0	010	-6	$2/8 \times 1/64 = 2/512$	
numbers	•••				
	0 0 0 0) 110	-6	$6/8 \times 1/64 = 6/512$	
	0 0 0 0) 111	-6	$7/8 \times 1/64 = 7/512$	largest denorm
	0 000	1 000	-6	8/8*1/64 = 8/512	smallest norm
	0 0 0 0	1 001	-6	9/8*1/64 = 9/512	
	0 011) 110	-1	$14/8 \times 1/2 = 14/16$	
Newsellered	0 011) 111	-1	$15/8 \times 1/2 = 15/16$	closest to 1 below
Normalized	0 011	1 000	0	8/8*1 = 1	
numbers	0 011	1 001	0	9/8*1 = 9/8	closest to 1 above
	0 011	1 010	0	10/8*1 = 10/8	
	0 111) 110	7	$14/8 \times 128 = 224$	
	0 111) 111	7	$15/8 \times 128 = 240$	largest norm
	0 111	1 000	n/a	inf	

Special Properties of Encoding

- ✤ Floating point zero (0⁺) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider 0⁻ = 0⁺ = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity