## Floating Point I

CSE 351 Winter 2020

| Instructor: | Teaching Assistants: |  |  |
| :--- | :--- | :--- | :--- |
| Ruth Anderson | Jonathan Chen | Justin Johnson | Porter Jones |
|  | Josie Lee | Jeffery Tian | Callum Walker |
|  | Eddy (Tianyi) Zhou |  |  |


http://xkcd.com/571/

## Administrivia

* Lab 1a due tonight Tues 1/21 at 11:59 pm
- Submit pointer.c and lab1Areflect.txt
- Make sure you submit something before the deadline and that the file names are correct
* hw5 due Wednesday, hw6 due Friday
* Lab 1b due next Monday (1/27)
- Submit bits.c and lab1Breflect.txt


## Unsigned Multiplication in C

Operands:
$w$ bits



True Product:
$2 w$ bits
Discard $w$ bits:
$w$ bits

$\operatorname{UMult}_{w}(u, v) \square \square \square \square$

* Standard Multiplication Function
- Ignores high order $w$ bits
* Implements Modular Arithmetic
- $\mathrm{UMult}_{w}(u, v)=u \cdot v \bmod 2^{w}$


## Multiplication with shift and add

* Operation $u \ll k$ gives $u * \mathbf{2}^{k}$
- Both signed and unsigned

Operands: w bits


True Product: w+k bits
$u \cdot 2^{k}$ ПП

Discard k bits: w bits
$\operatorname{UMult}_{w}\left(u, 2^{k}\right)$
$\operatorname{TMult}_{w}\left(u, 2^{k}\right)$

* Examples:
- $u \ll 3 \quad==u^{*} 8$
- $u \ll 5-u \ll 3==u * 24$
- Most machines shift and add faster than multiply
- Compiler generates this code automatically


## Number Representation Revisited

* What can we represent in one word?
- Signed and Unsigned Integers
- Characters (ASCII)
- Addresses
* How do we encode the following:
- Real numbers (e.g. 3.14159)
- Very large numbers (e.g. $6.02 \times 10^{23}$ )
- Very small numbers (e.g. $6.626 \times 10^{-34}$ )
- Special numbers (e.g. $\infty, \mathrm{NaN}$ )


## Floating Point Topics

* Fractional binary numbers
* IEEE floating-point standard
* Floating-point operations and rounding
* Floating-point in C

* There are many more details that we won't cover
- It's a 58-page standard...


## Floating Point Summary

* Floats also suffer from the fixed number of bits available to represent them
- Can get overflow/underflow, just like ints
- "Gaps" produced in representable numbers means we can lose precision, unlike ints
- Some "simple fractions" have no exact representation (e.g. 0.2)
- "Every operation gets a slightly wrong result"
* Floating point arithmetic not associative or distributive
- Mathematically equivalent ways of writing an expression may compute different results
* Never test floating point values for equality!
* Careful when converting between ints and floats!


## Representation of Fractions

* "Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

: Example: $10.1010_{2}=1 \times 2^{1}+1 \times 2^{-1}+1 \times 2^{-3}=2.625_{10}$

## Representation of Fractions

* "Binary Point," like decimal point, signifies boundary between integer and fractional parts:


## Example 6-bit representation:



* In this 6-bit representation:
- What is the encoding and value of the smallest (most negative) number?
- What is the encoding and value of the largest (most positive) number?
- What is the smallest number greater than 2 that we can represent?


## Fractional Binary Numbers



* Representation
- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \cdot 2^{k}
$$

## Fractional Binary Numbers

* Value
- 5 and 3/4 $101.11_{2}$
- 2 and $7 / 8$
- 47/64

Representation
$10.111_{2}$
$0.101111_{2}$

* Observations
- Shift left = multiply by power of 2
- Shift right = divide by power of 2
- Numbers of the form $0.111111 . . .2$ are just below 1.0
- $1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- Use notation $1.0-\varepsilon$


## Limits of Representation

* Limitations:
- Even given an arbitrary number of bits, can only exactly represent numbers of the form $x{ }^{*} 2^{y}$ ( $y$ can be negative)
- Other rational numbers have repeating bit representations


## Value:

- $1 / 3=0.333333_{\ldots 10}=0.01010101[01]_{\ldots 2}$
- $1 / 5=0.001100110011[0011]_{\ldots 2}$
- $1 / 10=0.0001100110011[0011] \ldots 2$


## Fixed Point Representation

* Implied binary point. Two example schemes:
\#1: the binary point is between bits 2 and 3
$b_{7} b_{6} b_{5} b_{4} b_{3}[.] b_{2} b_{1} b_{0}$
\#2: the binary point is between bits 4 and 5
$b_{7} b_{6} b_{5}[\cdot] b_{4} b_{3} b_{2} b_{1} b_{0}$
* Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have
* Fixed point $=$ fixed range and fixed precision
- range: difference between largest and smallest numbers possible
- precision: smallest possible difference between any two numbers
* Hard to pick how much you need of each!


## Floating Point Representation

* Analogous to scientific notation
- In Decimal:
- Not 12000000 , but $1.2 \times 10^{7} \quad$ In C: 1.2 e 7
- Not 0.0000012, but $1.2 \times 10^{-6} \quad$ In C: 1.2e-6
- In Binary:
- Not 11000.000, but $1.1 \times 2^{4}$
- Not 0.000101, but $1.01 \times 2^{-4}$
* We have to divvy up the bits we have (e.g., 32) among:
- the sign (1 bit)
- the mantissa (significand)
- the exponent


## Scientific Notation (Decimal)



* Normalized form: exactly one digit (non-zero) to left of decimal point
* Alternatives to representing 1/1,000,000,000
- Normalized:
- Not normalized:

```
1.0\times10-9
\(0.1 \times 10^{-8}, 10.0 \times 10^{-10}\)
```


## Scientific Notation (Binary)



* Computer arithmetic that supports this called floating point due to the "floating" of the binary point
- Declare such variable in C as float (or double)


## Scientific Notation Translation

* Convert from scientific notation to binary point
- Perform the multiplication by shifting the decimal until the exponent disappears
- Example: $1.011_{2} \times 2^{4}=10110_{2}=22_{10}$
- Example: $1.011_{2} \times 2^{-2}=0.01011_{2}=0.34375_{10}$
* Convert from binary point to normalized scientific notation
- Distribute out exponents until binary point is to the right of a single digit
- Example: $1101.001_{2}=1.101001_{2} \times 2^{3}$
* Practice: Convert $11.375_{10}$ to normalized binary scientific notation


## Floating Point Topics

* Fractional binary numbers
* IEEE floating-point standard
* Floating-point operations and rounding
* Floating-point in C
* There are many more details that we won't cover
- It's a 58-page standard...


## IEEE Floating Point

* IEEE 754
- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- Now supported by all major CPUs
* Driven by numerical concerns
- Scientists/numerical analysts want them to be as real as possible
- Engineers want them to be easy to implement and fast
- In the end:
- Scientists mostly won out
- Nice standards for rounding, overflow, underflow, but...
- Hard to make fast in hardware
- Float operations can be an order of magnitude slower than integer ops


## Floating Point Encoding

* Use normalized, base 2 scientific notation:
- Value:
$\pm 1 \times$ Mantissa $\times 2^{\text {Exponent }}$
- Bit Fields:
$(-1)^{\mathrm{S}} \times 1 . \mathrm{M} \times 2^{(\mathrm{E}-\text { bias })}$
* Representation Scheme:
- Sign bit ( 0 is positive, 1 is negative)
- Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector $\mathbf{M}$
- Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector $E$



## The Exponent Field

* Use biased notation
- Read exponent as unsigned, but with bias of $2^{w-1}-1=127$
- Representable exponents roughly $1 / 2$ positive and $1 / 2$ negative
- Exponent $0(E x p=0)$ is represented as E = Ob 01111111
* Why biased?
- Makes floating point arithmetic easier
- Makes somewhat compatible with two's complement
* Practice: To encode in biased notation, add the bias then encode in unsigned:
- Exp=1 $\rightarrow \quad \rightarrow E=0 b$
- Exp $=127 \rightarrow \quad \rightarrow \mathrm{E}=0 \mathrm{~b}$
- Exp $=-63 \rightarrow \quad \rightarrow E=0 b$


## The Mantissa (Fraction) Field



$$
(-1)^{S} \times(1 . M) \times 2^{(E-b i a s)}
$$

* Note the implicit 1 in front of the M bit vector
- Example: 0b 00111111110000000000000000000000 is read as $1.1_{2}=1.5_{10}$, not $0.1_{2}=0.5_{10}$
- Gives us an extra bit of precision
* Mantissa "limits"
- Low values near $\mathrm{M}=0 \mathrm{bO} 0 . .0$ are close to $2^{\text {Exp }}$
- High values near $\mathrm{M}=0 \mathrm{~b} 1 \ldots 1$ are close to $2^{\text {Exp }+1}$


## Polling Question

* What is the correct value encoded by the following floating point number?
- Ob 01000000011000000000000000000000
- Vote at http://pollev.com/rea
A. +0.75
B. +1.5
C. +2.75
D. +3.5
E. We're lost...


## Normalized Floating Point Conversions

* FP $\rightarrow$ Decimal

1. Append the bits of $M$ to implicit leading 1 to form the mantissa.
2. Multiply the mantissa by $2^{\mathrm{E}}$-bias.
3. Multiply the sign $(-1)^{\text {s }}$.
4. Multiply out the exponent by shifting the binary point.
5. Convert from binary to decimal.

* Decimal $\rightarrow$ FP

1. Convert decimal to binary.
2. Convert binary to normalized scientific notation.
3. Encode sign as $S(0 / 1)$.
4. Add the bias to exponent and encode E as unsigned.
5. The first bits after the leading 1 that fit are encoded into M.

## Precision and Accuracy

* Precision is a count of the number of bits in a computer word used to represent a value
- Capacity for accuracy
* Accuracy is a measure of the difference between the actual value of a number and its computer representation
- High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
- Example: float pi = 3.14;
- pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)


## Need Greater Precision?

* Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now $2^{10}-1=1023$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate


## Representing Very Small Numbers

* But wait... what happened to zero?
- Using standard encoding 0x00000000 =
- Special case: E and M all zeros $=0$
- Two zeros! But at least 0x00000000 = 0 like integers
* New numbers closest to 0:
- $a=1.0 \ldots 0_{2} \times 2^{-126}=2^{-126}$
- $b=1.0 \ldots 01_{2} \times 2^{-126}=2^{-126}+2^{-149}$

- Normalization and implicit 1 are to blame
- Special case: $\mathrm{E}=0, \mathrm{M} \neq 0$ are denormalized numbers


## Denorm Numbers

* Denormalized numbers
- No leading 1
- Uses implicit exponent of -126 even though $E=0 x 00$
* Denormalized numbers close the gap between zero and the smallest normalized number
- Smallest norm: $\pm 1.0 . . .0_{\text {two }} \times 2^{-126}= \pm 2^{-126}$
- Smallest denorm: $\pm 0.0 \ldots 01_{\mathrm{two}} \times 2^{-126}= \pm 2^{-149}$
- There is still a gap between zero and the smallest denormalized number


## Summary

* Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = $2^{\mathrm{w}-1}-1$ )
- Size of exponent field determines our representable range
- Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
- Size of mantissa field determines our representable precision
- Implicit leading 1 (normalized) except in special cases
- Exceeding length causes rounding


An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

## Tiny Floating Point Example

| $S$ | $E$ | $M$ |
| :---: | :---: | :---: |
| 1 | 4 | 3 |

* 8-bit Floating Point Representation
- The sign bit is in the most significant bit (MSB)
- The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
- The last three bits are the mantissa
* Same general form as IEEE Format
- Normalized binary scientific point notation
- Similar special cases for 0 , denormalized numbers, $\mathrm{NaN}, \infty$


## Dynamic Range (Positive Only)

|  | S | E | M | Exp | Value |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Denormalized numbers | 0 | 0000 | 000 | -6 | 0 | closest to zero |
|  | 0 | 0000 | 001 | -6 | $1 / 8 * 1 / 64=1 / 512$ |  |
|  | 0 | 0000 | 010 | -6 | $2 / 8 * 1 / 64=2 / 512$ |  |
|  | ... |  |  |  |  |  |
|  | 0 | 0000 | 110 | -6 | $6 / 8 * 1 / 64=6 / 512$ |  |
|  | 0 | 0000 | 111 | -6 | $7 / 8 * 1 / 64=7 / 512$ | largest denorm |
|  | 0 | 0001 | 000 | -6 | $8 / 8 * 1 / 64=8 / 512$ | smallest norm |
|  | 0 | 0001 | 001 | -6 | $9 / 8 * 1 / 64=9 / 512$ |  |
|  | ... |  |  |  |  |  |
|  | 0 | 0110 | 110 | -1 | $14 / 8 * 1 / 2=14 / 16$ |  |
|  | 0 | 0110 | 111 | -1 | $15 / 8 * 1 / 2=15 / 16$ | closest to 1 below |
| Normalized | 0 | 0111 | 000 | 0 | $8 / 8 * 1=1$ |  |
| numbers | 0 | 0111 | 001 | 0 | $9 / 8 * 1=9 / 8$ | closest to 1 above |
|  | 0 | 0111 | 010 | 0 | $10 / 8 * 1=10 / 8$ |  |
|  | ... |  |  |  |  |  |
|  | 0 | 1110 | 110 | 7 | $14 / 8 * 128=224$ |  |
|  | 0 | 1110 | 111 | 7 | $15 / 8 * 128=240$ | largest norm |
|  | 0 | 1111 | 000 | $\mathrm{n} / \mathrm{a}$ | inf |  |

## Special Properties of Encoding

* Floating point zero ( $0^{+}$) exactly the same bits as integer zero
- All bits $=0$
* Can (Almost) Use Unsigned Integer Comparison
- Must first compare sign bits
- Must consider $0^{-}=0^{+}=0$
- NaNs problematic
- Will be greater than any other values
- What should comparison yield?
- Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity

