Floating Point I

CSE 351 Winter 2020

Teaching Assistants: Instructor:

Ruth Anderson Jonathan Chen

Josie Lee

Eddy (Tianyi) Zhou

Justin Johnson Jeffery Tian

Porter Jones Callum Walker

http://xkcd.com/571/

Administrivia

- Lab 1a due tonight Tues 1/21 at 11:59 pm
 - Submit pointer.c and lab1Areflect.txt
 - Make sure you submit something before the deadline and that the file names are correct
- hw5 due Wednesday, hw6 due Friday
- Lab 1b due next Monday (1/27)
 - Submit bits.c and lab1Breflect.txt

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic
 - UMult_w $(u, v) = u \cdot v \mod 2^w$

CSE351, Winter 2020

Multiplication with shift and add

- ♦ Operation u<<k gives u*2^k
 - Both signed and unsigned

- Examples:
 - **1**1<<3 == 11 * 8
 - u<<5 u<<3 == u * 24 → 24 = 32 8 u<<4 + u<<3 Most machines shift and add faster than multiply
 - - Compiler generates this code automatically

Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses
- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10²³)
 - Very small numbers (e.g. 6.626×10⁻³⁴)
 - Special numbers (e.g. ∞, NaN)

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - "Gaps" produced in representable numbers means we can lose precision, unlike ints
 - Some "simple fractions" have no exact representation (e.g. 0.2)
 - "Every operation gets a slightly wrong result"
- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Representation of Fractions

"Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

* Example: $10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_1$

Representation of Fractions

"Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

- In this 6-bit representation:
 - What is the encoding and value of the smallest (most negative) number?
 - What is the encoding and value of the largest (most positive) number?
 - What is the smallest number greater than 2 that we can represent?

$$00.0000 = 0$$

11.111 =
$$4-2^{-4}$$

Can't represent

2=10.0000, in-between!

10.0001 = $2+2^{-4}$

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number: $\sum_{k=-i}^{i} b_k \cdot 2$

Fractional Binary Numbers

Value Representation

- 5 and 3/4 101.11₂
- 2 and 7/8
 10.111₂
- 47/64 0.101111₂

Observations

- Shift left = multiply by power of 2
- Shift right = divide by power of 2
- Numbers of the form 0.111111..., are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Limits of Representation

Limitations:

- Even given an arbitrary number of bits, can only **exactly** represent numbers of the form $x * 2^y$ (y can be negative)
- Other rational numbers have repeating bit representations

Value: Binary Representation:

```
1/3 = 0.3333333..._{10} = 0.01010101[01]..._{2}
```

- 1/5 = 0.2 0.001100110011[0011]...₂
- $1/10 = 0.0001100110011[0011]..._2$

Fixed Point Representation

Implied binary point. Two example schemes:

```
#1: the binary point is between bits 2 and 3

b<sub>7</sub> b<sub>6</sub> b<sub>5</sub> b<sub>4</sub> b<sub>3</sub> [] b<sub>2</sub> b<sub>1</sub> b<sub>0</sub>

#2: the binary point is between bits 4 and 5

b<sub>7</sub> b<sub>6</sub> b<sub>5</sub> [.] b<sub>4</sub> b<sub>3</sub> b<sub>2</sub> b<sub>1</sub> b<sub>0</sub>
```

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have
- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
- Hard to pick how much you need of each!

Floating Point Representation

- Analogous to scientific notation
 - In Decimal:
 - Not 12000000, but 1.2 x 10⁷ In C: 1.2e7
 - Not 0.0000012, but 1.2 x 10⁻⁶ In C: 1.2e-6
 - In Binary:
 - Not 11000.000, but 1.1 x 24
 - Not 0.000101, but 1.01 x 2-4
- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the mantissa (significand)
 - the exponent

Scientific Notation (Decimal)

- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000

■ Normalized: 1.0×10⁻⁹

• Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float (or double)

Scientific Notation Translation

$$2^{-1} = 0.5$$

 $2^{-2} = 0.25$
 $2^{-3} = 0.125$
 $2^{-4} = 0.0625$

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$
- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$
- * **Practice:** Convert 11.375_{10} to normalized binary scientific notation 8+2+1+5.25+0.125

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

IEEE Floating Point

IEEE 754

- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- Now supported by all major CPUs

Driven by numerical concerns

- Scientists/numerical analysts want them to be as real as possible
- Engineers want them to be easy to implement and fast
- In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: (±1 × Mantissa × 2 Exponent)
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-bias)}$
- * Representation Scheme: (3 separate fields within 32 bits)
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - **Exponent** weights the value by a (possibly negative) power of 2 and encoded in the bit vector **E**

The Exponent Field

- - Read exponent as unsigned, but with bias of 2^{w-1}-1 = 127
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement
- Practice: To encode in biased notation, add the bias then encode in unsigned:
 - Exp = 1 \rightarrow [28 \rightarrow E = 0b \ 000 000 0

 - Exp = -63 $\rightarrow 64'$ $\rightarrow E = 0b 0 100 000$

The Mantissa (Fraction) Field

- - **Example**: $0b \ 0011 \ 1111 \ 1100 \ 00000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000 \ 0000$
 - Gives us an extra bit of precision
- Mantissa "limits"
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}

Polling Question

- What is the correct value encoded by the following floating point number?
 - 0b 0 10000000 1100000000000000000000

$$\bigoplus Exp = 1$$
bias

Man = 1.110... 0

Vote at http://pollev.com/rea

$$A. + 0.75$$

$$B. + 1.5$$

$$C. + 2.75$$

$$D. + 3.5$$

$$+1.11_2 \times 2^1$$

 $11.1_2 = 2^1 + 2^0 + 2^{-1} = 3.5$

Normalized Floating Point Conversions

- * FP \rightarrow Decimal
 - 1. Append the bits of M to implicit leading 1 to form the mantissa.
 - 2. Multiply the mantissa by 2^{E-bias} .
 - 3. Multiply the sign (-1)^S.
 - 4. Multiply out the exponent by shifting the binary point.
 - 5. Convert from binary to decimal.

- ◆ Decimal → FP
 - 1. Convert decimal to binary.
 - 2. Convert binary to normalized scientific notation.
 - 3. Encode sign as S(0/1).
 - 4. Add the bias to exponent and encode E as unsigned.
 - 5. The first bits after the leading 1 that fit are encoded into M.

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
 - Example: float pi = 3.14;
 - pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits

- C variable declared as double
- Exponent bias is now $2^{10}-1 = 1023$, bias = $2^{10}-1$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Representing Very Small Numbers

- ♦ But wait... what happened to zero?

 S=0,E=0,M=0 ⇒ Exp=-127, Nan=10.0...0
 - Using standard encoding $0x000000000 = 1.0 \times 2^{-127} \neq 0$
 - Special case: <u>F</u> and M all zeros <u>= 0</u>
 - Two zeros! But at least 0x00000000 = 0 like integers 0x800000000 = -0
- New numbers closest to 0:

$$(E = 0 \times 0.1, E_{xp} = -126)$$

 $a = 1.0...0_2 \times 2^{-126} = 2^{-126}$

$$b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$$

- Normalization and implicit 1 are to blame
- Special case: E = 0, M ≠ 0 are denormalized numbers (0.M)
 normalized:
 1.M

Denorm Numbers

This is extra (non-testable) material

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm (1.0...0_{two} \times 2^{-126} = \pm 2^{-126})$ So much closer to 0
 - Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

Summary

Floating point approximates real numbers:

- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = 2^{w-1}-1)
 - Size of exponent field determines our representable range
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Size of mantissa field determines our representable precision
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
 - The last three bits are the mantissa
- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	SE	M	Exp	Value	
	0 0000	000	-6	0	
	0 0000	001	-6	1/8*1/64 = 1/512	closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512	
numbers	•••				
	0 0000	110	-6	6/8*1/64 = 6/512	
	0 0000) 111	-6	7/8*1/64 = 7/512	largest denorm
Ni a was a list a d	0 0001	000	-6	8/8*1/64 = 8/512	smallest norm
	0 0001	001	-6	9/8*1/64 = 9/512	
	•••				
	0 0110	110	-1	14/8*1/2 = 14/16	
	0 0110) 111	-1	15/8*1/2 = 15/16	closest to 1 below
Normalized	0 0111	000	0	8/8*1 = 1	
numbers	0 0111	001	0	9/8*1 = 9/8	closest to 1 above
	0 0111	010	0	10/8*1 = 10/8	
	•••				
	0 1110	110	7	14/8*128 = 224	
	0 1110) 111	7	15/8*128 = 240	largest norm
	0 1111	000	n/a	inf	

Special Properties of Encoding

- ❖ Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^{-} = 0^{+} = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity