Floating Point I
CSE 351 Winter 2020

Instructor: Ruth Anderson
Teaching Assistants: Jonathan Chen, Josie Lee, Justin Johnson, Jeffery Tian, Porter Jones, Callum Walker

signed overflow in 16 bits → short (in C)

http://xkcd.com/571/
Administrivia

- Lab 1a due tonight Tues 1/21 at 11:59 pm
 - Submit `pointer.c` and `lab1Areflect.txt`
 - Make sure you submit *something* before the deadline and that the file names are correct

- hw5 due Wednesday, hw6 due Friday

- Lab 1b due next Monday (1/27)
 - Submit `bits.c` and `lab1Breflect.txt`
Unsigned Multiplication in C

Operands:
 w bits

*
v

True Product:
 2w bits

Discard w bits:
 w bits

Standard Multiplication Function
 - Ignores high order w bits

Implements Modular Arithmetic
 - \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)
Multiplication with shift and add

- **Operation**: \(u \ll k \) gives \(u \times 2^k \)
 - Both signed and unsigned

Operands: \(w \) bits

<table>
<thead>
<tr>
<th>u (\ll k)</th>
<th>(u \times 2^k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 \ldots 010 \ldots 00)</td>
<td>(0 \ldots 010 \ldots 00)</td>
</tr>
</tbody>
</table>

True Product: \(w + k \) bits

<table>
<thead>
<tr>
<th>(u \times 2^k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0 \ldots 010 \ldots 00)</td>
</tr>
</tbody>
</table>

Discard \(k \) **bits**: \(w \) bits

\[\text{UMult}_w(u, 2^k) \]
\[\text{TMult}_w(u, 2^k) \]

- **Examples**:
 - \(u \ll 3 \) \quad == \quad u \times 8 \)
 - \(u \ll 5 - u \ll 3 \) \quad == \quad u \times 24 \quad \rightarrow 24 = 32 - 8 \)
 - \(u \ll 4 + u \ll 3 \) \quad \rightarrow 24 = 16 + 8 \)
 - Most machines shift and add faster than multiply
 - *Compiler generates this code automatically*
Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses

- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^{23})
 - Very small numbers (e.g. 6.626×10^{-34})
 - Special numbers (e.g. ∞, NaN)
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Floating Point Summary

- Floats also suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - “Gaps” produced in representable numbers means we can lose precision, unlike ints
 - Some “simple fractions” have no exact representation (e.g. 0.2)
 - “Every operation gets a slightly wrong result”

- Floating point arithmetic not associative or distributive
 - Mathematically equivalent ways of writing an expression may compute different results

- Never test floating point values for equality!
- Careful when converting between ints and floats!
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

\[\text{Example: } 10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10} \]
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

 Example 6-bit representation: \(\text{xx.yyyy} \)

- In this 6-bit representation:
 - What is the encoding and value of the smallest (most negative) number?
 - What is the encoding and value of the largest (most positive) number?
 - What is the smallest number greater than 2 that we can represent?
Fractional Binary Numbers

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number:
 \[
 \sum_{k=-j}^{i} b_k \cdot 2^k
 \]
Fractional Binary Numbers

- **Value**
 - 5 and 3/4 = 101.11₂
 - 2 and 7/8 = 10.111₂
 - 47/64 = 0.101111₂

- **Observations**
 - Shift left = multiply by power of 2
 - Shift right = divide by power of 2
 - Numbers of the form 0.111111...₂ are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0
 - Use notation 1.0 – ε
Limits of Representation

- Limitations:
 - Even given an arbitrary number of bits, can only **exactly** represent numbers of the form $x \times 2^y$ (y can be negative)
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/3$</td>
<td>$0.333333..._{10} = 0.01010101[01]..._2$</td>
</tr>
<tr>
<td>$1/5$</td>
<td>$0.2_{10} = 0.001100110011[0011]..._2$</td>
</tr>
<tr>
<td>$1/10$</td>
<td>$0.1_{10} = 0.0001100110011[0011]..._2$</td>
</tr>
</tbody>
</table>
Fixed Point Representation

- Implied binary point. Two example schemes:

 #1: the binary point is between bits 2 and 3
 \[b_7 \ b_6 \ b_5 \ b_4 \ _ \ b_2 \ b_1 \ b_0 \]

 #2: the binary point is between bits 4 and 5
 \[b_7 \ b_6 \ b_5 \ _ \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \]

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision we have

- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers

- Hard to pick how much you need of each!
Floating Point Representation

- Analogous to scientific notation
 - In Decimal:
 - Not 12000000, but 1.2×10^7 In C: 1.2e7
 - Not 0.0000012, but 1.2×10^{-6} In C: 1.2e-6
 - In Binary:
 - Not 11000.000, but 1.1×2^4
 - Not 0.000101, but 1.01×2^{-4}

- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the mantissa (significand)
 - the exponent
Scientific Notation (Decimal)

- **Normalized form**: exactly one digit (non-zero) to left of decimal point

- Alternatives to representing 1/1,000,000,000
 - Normalized: 1.0×10⁻⁹
 - Not normalized: 0.1×10⁻⁸,10.0×10⁻¹⁰
Scientific Notation (Binary)

- Computer arithmetic that supports this called **floating point** due to the “floating” of the binary point
 - Declare such variable in C as `float` (or `double`)

\[1.01_2 \times 2^{-1} \]

- mantissa
- exponent
- binary point
- radix (base)
Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: \(1.011_2 \times 2^4 = 10110_2 = 22_{10}\)
 - Example: \(1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}\)

- Convert from binary point to *normalized* scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: \(1101.001_2 = 1.101001_2 \times 2^3\)

- **Practice:** Convert \(11.375_{10}\) to normalized binary scientific notation
 \[
 11.375_{10} = 8 + 2 + 1 + 0.25 + 0.125 = 10110011_2 = 1.011011 \times 2^3
 \]
Floating Point Topics

- Fractional binary numbers
- **IEEE floating-point standard**
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
IEEE Floating Point

- IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

- Driven by numerical concerns
 - **Scientists**/numerical analysts want them to be as **real** as possible
 - **Engineers** want them to be **easy to implement** and **fast**
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - **Float operations can be an order of magnitude slower than integer ops**
Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: \(\pm 1 \times \text{Mantissa} \times 2^{\text{Exponent}} \)
 - Bit Fields: \((-1)^S \times 1.M \times 2^{(E-bias)}\)

- Representation Scheme: (3 separate fields within 32 bits)
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector \(M\)
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector \(E\)
The Exponent Field

- Use biased notation
 - Read exponent as unsigned, but with bias of $2^{w-1} - 1 = 127$
 - Representable exponents roughly $\frac{1}{2}$ positive and $\frac{1}{2}$ negative
 - Exponent 0 (Exp = 0) is represented as $E = 0b\ 0111\ 1111$

- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two’s complement

- Practice: To encode in biased notation, add the bias then encode in unsigned:
 - Exp = 1 → 128 → $E = 0b\ 1000\ 0000$
 - Exp = 127 → 254 → $E = 0b\ 1111\ 1110$
 - Exp = -63 → 64 → $E = 0b\ 0100\ 0000$
The Mantissa (Fraction) Field

\[(-1)^S \times (1. \ M) \times 2^{(E-bias)} \]

- Note the implicit 1 in front of the M bit vector
 - Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000 is read as 1.1₂ = 1.5₁₀, not 0.1₂ = 0.5₁₀
 - Gives us an extra bit of precision

- Mantissa “limits”
 - Low values near \(M = 0b0...0 \) are close to \(2^{\text{Exp}} \)
 - High values near \(M = 0b1...1 \) are close to \(2^{\text{Exp}+1} \)
Polling Question

What is the correct value encoded by the following floating point number?

- **0b 0 10000000 11000000000000000000000**

Vote at http://pollev.com/rea

A. + 0.75
B. + 1.5
C. + 2.75
D. + 3.5
E. We’re lost...

\[+1.11_2 \times 2^1 \]

\[11.1_2 = 2^1 + 2^0 + 2^{-1} = 3.5 \]
Normalized Floating Point Conversions

- **FP → Decimal**
 1. Append the bits of M to implicit leading 1 to form the mantissa.
 2. Multiply the mantissa by $2^{E - \text{bias}}$.
 3. Multiply the sign $(-1)^S$.
 4. Multiply out the exponent by shifting the binary point.
 5. Convert from binary to decimal.

- **Decimal → FP**
 1. Convert decimal to binary.
 2. Convert binary to normalized scientific notation.
 3. Encode sign as $S (0/1)$.
 4. Add the bias to exponent and encode E as unsigned.
 5. The first bits after the leading 1 that fit are encoded into M.
Precision and Accuracy

- **Precision** is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy

- **Accuracy** is a measure of the difference between the actual value of a number and its computer representation
 - *High precision permits high accuracy but doesn’t guarantee it. It is possible to have high precision but low accuracy.*
 - **Example:** `float pi = 3.14;`
 - `pi` will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)
Need Greater Precision?

- Double Precision (vs. Single Precision) in 64 bits

- C variable declared as `double`
- Exponent bias is now $2^{10} - 1 = 1023$, $bias = 2^{w-1} - 1$
- **Advantages:** greater precision (larger mantissa), greater range (larger exponent)
- **Disadvantages:** more bits used, slower to manipulate
Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding $0x00000000 = 1.0 \times 2^{-127} \neq 0$
 - **Special case:** E and M all zeros = 0
 - Two zeros! But at least $0x00000000 = 0$ like integers
 $0x80000000 = -0$

- New numbers closest to 0:
 - $(E = 0x01, Exp = -126)$
 - $a = 1.0...0 \times 2^{-126} = 2^{-126}$
 - $b = 1.0...01 \times 2^{-126} = 2^{-126} + 2^{-149}$
 - Normalization and implicit 1 are to blame
 - **Special case:** $E = 0$, $M \neq 0$ are denormalized numbers
 $0.M$

![Diagram of gaps and numbers near zero]
Denorm Numbers

- Denormalized numbers
 - **No leading 1**
 - Uses implicit exponent of -126 even though $E = 0x00$

- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0\ldots0_{\text{two}} \times 2^{-126} = \pm 2^{-126}$
 - Smallest denorm: $\pm 0.0\ldots01_{\text{two}} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number
Summary

- Floating point approximates real numbers:
 - Handles large numbers, small numbers, special numbers
 - Exponent in biased notation (bias = $2^{w-1} - 1$)
 - Size of exponent field determines our representable range
 - Outside of representable exponents is overflow and underflow
 - Mantissa approximates fractional portion of binary point
 - Size of mantissa field determines our representable precision
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding
BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don’t need to read these, the information is “fair game.”
Tiny Floating Point Example

- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1} - 1 = 7$
 - The last three bits are the mantissa

- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>M</th>
<th>Exp</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000</td>
<td>000</td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>001</td>
<td>-6</td>
<td>$1/8 \times 1/64 = 1/512$</td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
<td>010</td>
<td>-6</td>
<td>$2/8 \times 1/64 = 2/512$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Closest to zero</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Largest denorm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Smallest norm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Closest to 1 below</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Closest to 1 above</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Largest norm</td>
</tr>
<tr>
<td>0</td>
<td>0001</td>
<td>000</td>
<td>-6</td>
<td>$8/8 \times 1/64 = 8/512$</td>
</tr>
<tr>
<td>0</td>
<td>0001</td>
<td>001</td>
<td>-6</td>
<td>$9/8 \times 1/64 = 9/512$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
<td>110</td>
<td>-1</td>
<td>$14/8 \times 1/2 = 14/16$</td>
</tr>
<tr>
<td>0</td>
<td>0110</td>
<td>111</td>
<td>-1</td>
<td>$15/8 \times 1/2 = 15/16$</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>000</td>
<td>0</td>
<td>$8/8 \times 1 = 1$</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>001</td>
<td>0</td>
<td>$9/8 \times 1 = 9/8$</td>
</tr>
<tr>
<td>0</td>
<td>0111</td>
<td>010</td>
<td>0</td>
<td>$10/8 \times 1 = 10/8$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1110</td>
<td>110</td>
<td>7</td>
<td>$14/8 \times 128 = 224$</td>
</tr>
<tr>
<td>0</td>
<td>1110</td>
<td>111</td>
<td>7</td>
<td>$15/8 \times 128 = 240$</td>
</tr>
<tr>
<td>0</td>
<td>1111</td>
<td>000</td>
<td>n/a</td>
<td>Inf</td>
</tr>
</tbody>
</table>

Denormalized numbers

Normalized numbers
Special Properties of Encoding

- Floating point zero (0^+) exactly the same bits as integer zero
 - All bits $= 0$

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity