WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

Floating Point |

CSE 351 Winter 2020

Instructor: Teaching Assistants:
Ruth Anderson Jonathan Chen Justin Johnson Porter Jones
Josie Lee Jeffery Tian Callum Walker

Eddy (Tianyi) Zhou

sgned sverflpo @ W b = ot Ga C)
loos 2.0 - 1306... 1307... | [...32:767...-32768...| | -32,767...-32,%66...

-l o3 (bt | e
| e R
LA A A AN A A AN £

A || A ol

http://xkcd.com/571/

BAAA




WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

Administrivia

+» Lab 1la due toenight Tues 1/21 at 11:59 pm
= Submit pointer.cand lablAreflect.txt

" Make sure you submit something before the deadline and
that the file names are correct

+» hw5 due Wednesday, hw6 due Friday

+» Lab 1b due next Monday (1/27)
= Submitbits.cand lablBreflect. txt



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSE351, Winter 2020

Unsigned Multiplication in C

u ceo
Operands: *
w bits v —
True Product: v T, p—
2w bits
Discard w bits: UMult,(u, V) ces
w bits

+» Standard Multiplication Function

" |gnores high order w bits

+ Implements Modular Arithmetic

= UMult,(u, v)=u-v mod 2%



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSE351, Winter 2020

Multiplication with shift and add

» Operation u<<k gives u*2k

= Both signed and unsigned

U o 00
Operands: w bits K
* 2k 0 YY) 0 1 0 YY) 0 0
True Product: w + k bits u- 2k X 0] e ]OJO
Discard k bits: w bits UMult,(u, 2€) [ _eee 0] e JOJO

TMult, (U , 2%)
« Examples:

 y<<3l == u * 8
B U<<h - y<<3 == Uy * 24 —-24=32-%
w<<Y 4+ L<<32 N> 24= 1648

" Most machines shift and add faster than multiply
- Compiler generates this code automatically



WA UNIVERSITY of WASHINGTON LO6: Floating Point |

Number Representation Revisited

+» What can we represent in one word?

= Signed and Unsigned Integers‘/
" Characters (ASCI

" Addresses

+» How do we encode the following:
= Real numbers (e.g. 3.14159)&—
= Very large numbers (e.g. 6.02x107%3)
= Very small numbers (e.g. 6.626x10734)
= Special numbers (e.g. =, NaN)

S—

CSE351, Winter 2020

Floating
Point



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSE351, Winter 2020

Floating Point Topics

» Fractional binary numbers

+ |EEE floating-point standard

+ Floating-point operations and rounding
» Floating-point in C

+» There are many more details that we won’t cover
" |t's a 58-page standard...



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

Floating Point Summary

« Floats also suffer from the fixed number of bits
available to represent them

= Can get overflow/underflow, just like Ints
= “Gaps” produced in representable numbers means we can

lose precision, unlike INts
- Some “simple fractions” have no exact representation (e.g. 0.2)
- “Every operation gets a slightly wrong result”

+» Floating point arithmetic not associative or
distributive

" Mathematically equivalent ways of writing an expression
ompute different results j

+» Never test floating point values for equality!

-

+» Careful when converting between 1nts and floats!



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

Representation of Fractions

+» “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

i XX@VVV
Example 6-bit
representation: /20/ zi \22\23\
\ ( \‘ ™~ \

/

J

/L — —_—— C
» Example: 10.1010, = 1x21 + 1x21% 1x23 =72.6255
N ~— u




WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

Representation of Fractions

+» “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

' XX.YYYY
Example 6-bit
representation: 2! /zof z-i \2\}24

In this 6-bit representation:

= What is the encoding and value of ~
the smallest (most negative) number? 00.0000, = O

Con'}
[ 4 Q_P(Q sey\“_

-y
L////- 0"\7"1«'.'\9

" What is the smallest number greater 2= o 0000, f in-betneen .
than 2 that we can represent? 10.0001 = 2+ 2’“ @,

9

= What is the encoding-a-nd value of 1111 1@: 4 -1
the largest (most positive) number? z,



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSE351, Winter 2020

Fractional Binary Numbers

2i
2i—1

» Representation

= Bits to right of “binary point” represent fractional powers of 2

Lk
2. by -2

k=-]

= Represents rational number:

10



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

Fractional Binary Numbers

+» Value Representation
= 5and 3/4 101.11,
= 2and 7/8 10.111,
= 47/64 0.101111,

+ Observations
= Shift left = multiply by power of 2
= Shift right = divide by power of 2
* Numbers of the form 0.111111.., are just below 1.0

= 1/2+1/4+1/8+...+1/2'+...— 1.0
= Use notation 1.0 —¢

11



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

Limits of Representation

<« Limitations:

= Even given an arbitrary number of bits, can only exactly
represent numbers of the form x * 2Y (y can be negative)

® Other rational numbers have repeating bit representations

Value: Binary Representation:
1/3)=0.333333..,,=  0.01010101[01]...,

- 1/5 = 0.2,> 0.001100110011[0011]...,
. 1/10= (). |, = 0.0001100110011[0011]...,

12



WA UNIVERSITY of WASHINGTON LO6: Floating Point |

@Point Representation

+» Implied binary point. Two example schemes:

#1: the binary point is between bits 2 and 3

#2: the binary point is between bits 4 and 5
b, b be [.] b, b, b, b, by
+» Wherever we put the binary point, with fixed point

representations there is a trade off between the
amount of range and precision we have

+ Fixed point = fixed range and fixed precision
= range: difference between largest and smallest numbers possible

= precision: smallest possible difference between any two numbers

+» Hard to pick how much you need of each!

13

CSE351, Winter 2020



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

Floating Point Representation

+» Analogous to scientific notation

" |n Decimal: N
. 7 .
Not 12000000, but 1.2 x 10 In C: 1.2e7
« Not 0.0000012, but 1.2 x 10°® In C: 1.2e-6

" |n Binary:
/\L_\ @

- Not 11000.000, but 1.1 x
 Not 0.000101, but 1.01 x Q

+» We have to divvy up the bits we have (e.g., 32) among:
= the sign (1 bit)
" the mantissa (significand)

" the exponent

14



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSE351, Winter 2020

Scientific Notation (Decimal)

mantissa

, exponent
6i0210 x 10%3
decimal point radix (base)

+» Normalized form: exactly one digit (non-zero) to left
of decimal point

+ Alternatives to representing 1/1,000,000,000
" Normalized: 1.0x10°
= Not normalized: 0.1x10%,10.0x10°10

15



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSE351, Winter 2020

Scientific Notation (Binary)

mantissa

, exponent
1i012 x 21
binary point radix (base)

+» Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

= Declare such variable in C as Float (or double)

16



WA UNIVERSITY of WASHINGTON

LO6: Floating Point |

CSE351, Winter 2020

\

27 = 05
Scientific Notation Translation 2% = 015
77 = 0.12%
+ Convert from scientific notation to binary point 7' = 0.0625

= Perform the multiplication by shifting the decimal until the exponent
disappears

- Example: 1.011,%x24=10110, = 22,,
- Example: 1.011,%x22 = 0.01011, = 0.34375,,

e

» Convert from binary point to normalized scientific notation

= Distribute out exponents until binary point is to the right of a single digit
- Example: 1101.001, = 1.101001,%x23

+ Practice: Convert@.@10 to normalized binary scientific
notation 312+l +r 025 +0 125

011001,

17



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSE351, Winter 2020

Floating Point Topics

+ Fractional binary numbers

(= IEEE floating-point standard )

+ Floating-point operations and rounding

+ Floating-point in C

% There are many more details that we won’t cover
" |t's a 58-page standard...

18



WA UNIVERSITY of WASHINGTON LO6: Floating Point |

CSE351, Winter 2020

IEEE Floating Point

« |EEE 754

= Established in 1985 as uniform standard for floating point arithmetic
" Main idea: make numerically sensitive programs portable

= Specifies two things: representation and result of floating operations
= Now supported by all major CPUs

« Driven by numerical concerns

= Scientists/numerical analysts want them to be as real as possible

= Engineers want them to be easy to implement and fast
In the end:

Scientists mostly won out

Nice standards for rounding, overflow, underflow, but...
Hard to make fast in hardware

Float operations can be an order of magnitude slower than integer ops

19



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

Floating Point Encoding

+» Use normalized, base 2 scientific notation:
= Value: @1 x (Mantissax 2€xponent
" Bit Fields: (-1)° x 1.M x 2(E-bias)

s Representation Scheme: (3 scporsle Fields within 32 bils)
=,Sign bit (0 is positive, 1 is negative)

\ = Mantissa (a.k.a. significand) is the fractional part of the
W
Ve < number in normalized form and encoded in bit vector M

'3_xponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vector E
31 30 2322

S E~ | M
1bit 8 bits “=binary 23 bits

enCod ng s

M

20



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

The Exponent Field 6 U el Y = |2 46— 127
R»yY
+ Use biased notation  ,_¢ Zf | -127
" Read exponent as unsigned, but with bias of 2%-1-1 =127
= Representable exponents roughly % positive and % negative

= Exponent O (Exp =0) is represented as E=0b 0111 1111
+» Why biased?

" Makes floating point arithmetic easier

" Makes somewhat compatible with two’s complement

» Practice: To encode in biased notation, add the bias then
encode in unsighed:
" Exp=1 - |29 > E=0b 000 vo0 g
" Exp=127 254 S E=0b (|| 11115
" Exp=-63 — é)"]l —>E=0b 010§ OOve

21



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

The Mantissa (Fraction) Field

31 30 23 22 0
L e [ W ]
1 bit 8 bits 23 bits

(-1)° x (1. M) x 2(E-bias)

+» Note themeI|C|t 1 m front of the M bit vector

f’\an"]- 10...0

= Example: Ob O()lf 1111 1100 0000 0000 0000 0000 0000
isreadas 1.1,=1.5,,, not 0.1,=0.5,,

" Gives us an extra bit of precision

«» Mantissa “limits”
= | ow values near M = 0b0...0 are close to 2%
" High values near M = 0b1...1 are close to 2F®*!

22



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSE351, Winter 2020

Polling Question

» What is the correct value encoded by the following
floatmsg pomt number?

"0b O 10000000 11000000000000000000000

128 - 123
®  Exp=1l ‘b Mon=1.110...0
= \ote at http://pollev.com/rea  “implict

1, x

1 — 2’+Zb +Z—‘ = '))g

+1.5 13-\
11

mo/lo = >
+
N
~J
0]

We’re lost...

23



WA UNIVERSITY of WASHINGTON

LO6: Floating Point |

CSE351, Winter 2020

Normalized Floating Point Conversions

«» FP = Decimal

1.

Append the bits of M to
implicit leading 1 to form
the mantissa.

. Multiply the mantissa by

2E— bias

. Multiply the sign (-1)5.
. Multiply out the

exponent by shifting the
binary point.

. Convert from binary to

decimal.

«» Decimal > FP

1.

Convert decimal to
binary.

. Convert binary to

normalized scientific
notation.

. Encode sign as S (0/1).

Add the bias to exponent
and encode E as

unsigned.

. The first bits after the

leading 1 that fit are

encoded into M.
24



WA UNIVERSITY of WASHINGTON

LO6: Floating Point |

CSE351, Winter 2020

Precision and Accuracy

+ Precision is a count of the number of bits in a
computer word used to represent a value
= Capacity for accuracy

O/

+ Accuracy is a measure of the difference between the

actual value of a number and its computer
representation

" High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.

= Example: float p1 = 3.14;

- p1 will be represented using all 24 bits of the mantissa (highly
precise), but is only an approximation (not accurate)

25



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

Need Greater Precision?

+» Double Precision (vs. Single Precision) in 64 bits

63 62 5251 32
E(11) | M (20 of 52)
31 0
—»> M (32 of 52)

= Cvariable declared as double

= Exponent bias is now 210-1 =1023 , L =2°"-1

= Advantages: greater precision (larger mantissa),
greater range (larger exponent)

= Disadvantages: more bits used,
slower to manipulate

26



WA UNIVERSITY of WASHINGTON LO6: Floating Point |

Representing Very Small Numbers

o I ?
But wait... what happeneSgOFEgo?£20£> Erp = -12%, Man =6 .0

» Using standard encoding 0x00000000 = 1 0=2"*"# O

" Special case: Eand M all zeros =0

« Two zeros! But at least 0x00000000 = O like integers
Ox8000 000L =-0

+ New numbers closest to O: Gaps! b
(E =0x0L, Exp= 126 |
" a=1.0.0,x212=212% : KDyt 4o
" b=1.0..01,x21% = 2156 4 149 !

®" Normalization and implicit 1 are to blame

= Special case: E =0, M # 0 are denormalized numbers (0.M)

S~ S~——— ,
norma li 204 ‘L’M

27

CSE351, Winter 2020



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

This is extra

Denorm Numbers (non-testable)

material

+» Denormalized numbers
" [No leading 1
= Uses implicitlexponent of =126 even though E = 0x00

+» Denormalized\numbers close the gap between zero
and the smallestjnormalized number o much
" Smallest norm: £{1.0...0,,,,x21° = £ 27126~ (joserto 0
= Smallest denorm: £0.0...01,, x21%6 = + 27149

« There is still a gap between zero and the smallest denormalized
number

28



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

Summary

+ Floating point approximates real numbers:
3130 23 22

E(8) | M (23)

_I°

®" Handles large numbers, small numbers, special numbers
= Exponent in biased notation (bias = 2%-1-1)
« Size of exponent field determines our representable range

« Outside of representable exponents is overflow and underflow

" Mantissa approximates fractional portion of binary point
- Size of mantissa field determines our representable precision
 Implicit leading 1 (normalized) except in special cases
- Exceeding length causes rounding

29



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSE351, Winter 2020

BONUS SLIDES

An example that applies the IEEE Floating Point
concepts to a smaller (8-bit) representation scheme.
These slides expand on material covered today, so
while you don’t need to read these, the information is
“fair game.”

30



WA UNIVERSITY of WASHINGTON LO6: Floating Point | CSES351, Winter 2020

Tiny Floating Point Example

S E M
1 4 3

+ 8-bit Floating Point Representation
" The sign bit is in the most significant bit (MSB)
" The next four bits are the exponent, with a bias of 241-1=7
= The last three bits are the mantissa

+» Same general form as IEEE Format
" Normalized binary scientific point notation
= Similar special cases for 0, denormalized numbers, NaN, oo

31



WA UNIVERSITY of WASHINGTON

LO6: Floating Point |

Dynamic Range (Positive Only)

Denormalized

numbers

Normalized
numbers

S

OCOO0OO0O0O0O: OOO0OO0O: OOOo

© O O:

E M

0000 000
0000 001
0000 010

0000 110
0000 111
0001 000
0001 001

0110 110
0110 111
0111 000
0111 001
0111 010

1110 110
1110 111
1111 OO0

EXp

SN

n/a

Value

o)
1/8*1/64
2/8*1/64

6/8*1/64
7/8*1/64
8/8*1/64
9/8*1/64

14/8*1/2
15/8*1/2
8/8*1
9/8*1
10/8*1

14/8*128
15/8*128
inf

1/512
2/512

6/512
7/512
8/512
9/512

14/16
15/16

9/8
10/8

224
240

CSE351, Winter 2020

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

32



WA UNIVERSITY of WASHINGTON LO6: Floating Point |

CSE351, Winter 2020

Special Properties of Encoding

+ Floating point zero (0*) exactly the same bits as integer zero
= All bits=0

+ Can (Almost) Use Unsigned Integer Comparison
" Must first compare sign bits
" Must consider0"=0*=0
" NaNs problematic

- Will be greater than any other values
« What should comparison yield?

= QOtherwise OK

« Denorm vs. normalized
« Normalized vs. infinity

33



