Integers II
CSE 351 Winter 2020

Instructor: Ruth Anderson

Teaching Assistants:
Jonathan Chen
Josie Lee
Eddy (Tianyi) Zhou
Justin Johnson
Jeffery Tian
Porter Jones
Callum Walker

http://xkcd.com/1953/
Administrivia

- hw4 due 1/17, hw5 due 1/22
- Lab 1a due Friday (1/17)
 - Submit pointer.c and lab1Areflect.txt to Gradescope
- Lab 1b coming soon, due 1/27
 - Bit puzzles on number representation
 - Can start after today’s lecture, but floating point will be introduced next week
 - Section worksheet from yesterday has helpful examples, too
 - Bonus slides at the end of today’s lecture have relevant examples
Extra Credit

- All labs starting with Lab 1b have extra credit portions
 - These are meant to be fun extensions to the labs

- Extra credit points *don't* affect your lab grades
 - From the course policies: “they will be accumulated over the course and will be used to bump up borderline grades at the end of the quarter.”
 - Make sure you finish the rest of the lab before attempting any extra credit
Integers

- **Binary representation of integers**
 - Unsigned and signed
 - Casting in C

- Consequences of finite width representations
 - Overflow, sign extension

- Shifting and arithmetic operations
Two’s Complement Arithmetic

- The same addition procedure works for both unsigned and two’s complement integers
 - **Simplifies hardware:** only one algorithm for addition
 - **Algorithm:** simple addition, **discard the highest carry bit**
 - Called modular addition: result is sum \(\text{modulo } 2^w \)

- **4-bit Examples:**

<table>
<thead>
<tr>
<th>HW</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>+4</td>
</tr>
<tr>
<td>+0011</td>
<td>+3</td>
</tr>
<tr>
<td>= 0111</td>
<td>+7 ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HW</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1100</td>
<td>-4</td>
</tr>
<tr>
<td>+0011</td>
<td>+3</td>
</tr>
<tr>
<td>= 1111</td>
<td>-1 ✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HW</th>
<th>TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0100</td>
<td>+4</td>
</tr>
<tr>
<td>+1101</td>
<td>-3</td>
</tr>
<tr>
<td>= 0001</td>
<td>+1 ✓</td>
</tr>
</tbody>
</table>
Why Does Two’s Complement Work?

- For all representable positive integers \(x \), we want:

 \[
 \begin{align*}
 \text{additive inverse} & \quad \text{bit representation of } x \\
 + & \quad \text{bit representation of } -x \\
 \quad & \quad \text{(ignoring the carry-out bit)}
 \end{align*}
 \]

- What are the 8-bit negative encodings for the following?

 \[
 \begin{align*}
 \text{0}0\text{0}0\text{0}0\text{0}0\text{0}1 & + \text{??????????} & \text{1}1\text{0}0\text{0}0\text{0}1\text{1} & + \text{??????????} \\
 \text{0}0\text{0}0\text{0}0\text{000} & \text{X0}0\text{0}0\text{0}0\text{000} & \text{X0}0\text{0}0\text{0000000}
 \end{align*}
 \]
Why Does Two’s Complement Work?

- For all representable positive integers x, we want:
 \[x + (\sim x) = \delta b_1 \ldots 1 \]
 \[x + (\sim x) = -1 \]
 \[x + (\sim x + 1) = 0 \]
 \[-x = \sim x + 1 \]

- What are the 8-bit negative encodings for the following?

 \[
 \begin{align*}
 00000001 & \quad 00000010 & \quad 11000011 \\
 + 11111111 & + 11111110 & + 00111101 \\
 \underline{100000000} & \underline{100000000} & \underline{100000000}
 \end{align*}
 \]

These are the bitwise complement plus 1!

\[-x = \sim x + 1\]
Signed/Unsigned Conversion Visualized

- Two’s Complement → Unsigned
 - Ordering Inversion
 - Negative → Big Positive
Values To Remember

- **Unsigned Values**
 - UMin = 0b00...0 = 0
 - UMax = 0b11...1 = 2^w - 1

- **Example:** Values for w = 64

<table>
<thead>
<tr>
<th></th>
<th>Decimal</th>
<th>Hex</th>
</tr>
</thead>
<tbody>
<tr>
<td>UMax</td>
<td>18,446,744,073,709,551,615</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmax</td>
<td>9,223,372,036,854,775,807</td>
<td>7F FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>Tmin</td>
<td>-9,223,372,036,854,775,808</td>
<td>80 00 00 00 00 00 00 00</td>
</tr>
<tr>
<td>-1</td>
<td>-1</td>
<td>FF FF FF FF FF FF FF FF FF</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>00 00 00 00 00 00 00 00 00</td>
</tr>
</tbody>
</table>
In C: Signed vs. Unsigned

- **Casting**
 - Bits are unchanged, just interpreted differently!
 - `int tx, ty;`
 - `unsigned int ux, uy;`
 - *Explicit* casting
 - `tx = (int) ux;`
 - `uy = (unsigned int) ty;`
 - *Implicit* casting can occur during assignments or function calls
 - *cast to target variable/parameter type*
 - `tx = ux;`
 - `uy = ty;` (also implicitly occurs with printf format specifiers)
Casting Surprises

- Integer literals (constants)
 - By default, integer constants are considered _signed_ integers
 - Hex constants already have an explicit binary representation
 - Use “U” (or “u”) suffix to explicitly force _unsigned_
 - Examples: 0U, 4294967259u

- Expression Evaluation
 - When you mixed unsigned and signed in a single expression, then _signed values are implicitly cast to unsigned_ (unsigned “dominates”)
 - Including comparison operators <, >, ==, <=, >=
Casting Surprises

- **32-bit examples:**
 - TMin = -2,147,483,648, TMax = 2,147,483,647

<table>
<thead>
<tr>
<th>Left Constant</th>
<th>Order</th>
<th>Right Constant</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>>=</td>
<td>0U</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td><</td>
<td>0</td>
<td>signed</td>
</tr>
<tr>
<td>-1</td>
<td>></td>
<td>0U</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>></td>
<td>-2147483648</td>
<td>signed</td>
</tr>
<tr>
<td>2147483647U</td>
<td><</td>
<td>-2147483648</td>
<td>unsigned</td>
</tr>
<tr>
<td>-1</td>
<td>></td>
<td>-2</td>
<td>signed</td>
</tr>
<tr>
<td>(unsigned) -1</td>
<td>></td>
<td>-2</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td><</td>
<td>2147483648U</td>
<td>unsigned</td>
</tr>
<tr>
<td>2147483647</td>
<td>></td>
<td>(int) 2147483648U</td>
<td>signed</td>
</tr>
</tbody>
</table>
Integers

❖ Binary representation of integers
 ▪ Unsigned and signed
 ▪ Casting in C

❖ Consequences of finite width representations
 ▪ Overflow, sign extension

❖ Shifting and arithmetic operations
Arithmetic Overflow

- When a calculation produces a result that can’t be represented in the current encoding scheme
 - Integer range limited by fixed width
 - Can occur in both the positive and negative directions
- C and Java ignore overflow exceptions
 - You end up with a bad value in your program and no warning/indication... oops!

<table>
<thead>
<tr>
<th>Bits</th>
<th>Unsigned</th>
<th>Signed</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0(^{\text{Umin}})</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0010</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>0011</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>0100</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>0101</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>0110</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>(-8)</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>(-7)</td>
</tr>
<tr>
<td>1010</td>
<td>10</td>
<td>(-6)</td>
</tr>
<tr>
<td>1011</td>
<td>11</td>
<td>(-5)</td>
</tr>
<tr>
<td>1100</td>
<td>12</td>
<td>(-4)</td>
</tr>
<tr>
<td>1101</td>
<td>13</td>
<td>(-3)</td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>(-2)</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>(-1)</td>
</tr>
</tbody>
</table>
Overflow: Unsigned

- **Addition:** drop carry bit (-2^n)

\[
\begin{array}{c}
15 \\
+ 2 \\
\hline
17 \\
\end{array}
\quad
\begin{array}{c}
1111 \\
+ 0010 \\
\hline
10001 \\
\end{array}
\]

- **Subtraction:** borrow ($+2^n$)

\[
\begin{array}{c}
1 \\
- 2 \\
\hline
-1 \\
\end{array}
\quad
\begin{array}{c}
10001 \\
- 0010 \\
\hline
1111 \\
\end{array}
\]

$\pm 2^n$ because of modular arithmetic
Overflow: Two’s Complement

- **Addition:** \((+) + (+) = (-)\) result?

 \[
 \begin{array}{c}
 6 \\
 + 3 \\
 \hline
 9
 \end{array}
 \quad \begin{array}{c}
 0110 \\
 + 0011 \\
 \hline
 1001
 \end{array}

 \text{OK}

 - 7

- **Subtraction:** \((-) + (-) = (+)\)?

 \[
 \begin{array}{c}
 -7 \\
 -3 \\
 \hline
 -10
 \end{array}
 \quad \begin{array}{c}
 1001 \\
 - 0011 \\
 \hline
 0110
 \end{array}

 6

For signed: overflow if operands have same sign and result’s sign is different
Sign Extension

- What happens if you convert a signed integral data type to a larger one?
 - e.g. char → short → int → long

- 4-bit → 8-bit Example:
 - Positive Case
 - 4-bit: \(0010\) = +2
 - 8-bit: \(00000010\) = +2
 - Negative Case?
Polling Question

- Which of the following 8-bit numbers has the same signed value as the 4-bit number \(\text{0b1100} \)?
 - Underlined digit = MSB
 - Vote at http://pollev.com/rea

A. \(\text{0b 0000 1100} \) — add zeros

B. \(\text{0b 1000 1100} \) — add leading 1

C. \(\text{0b 1111 1100} \) — add ones

D. \(\text{0b 1100 1100} \) — duplicate

E. We’re lost...
Sign Extension

- **Task:** Given a w-bit signed integer X, convert it to a $w+k$-bit signed integer X' *with the same value*
- **Rule:** Add k copies of sign bit
 - Let x_i be the i-th digit of X in binary
 - $X' = x_{w-1}, ..., x_{w-1}, x_{w-1}, x_{w-2}, ..., x_1, x_0$

![Diagram showing sign extension](image)
Sign Extension Example

- Convert from smaller to larger integral data types
- C automatically performs sign extension
 - Java too

```java
short int x = 12345;
int ix = (int) x;
short int y = -12345;
int iy = (int) y;
```

<table>
<thead>
<tr>
<th>Var</th>
<th>Decimal</th>
<th>Hex</th>
<th>Binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>12345</td>
<td>30 39</td>
<td>00110000 00111001</td>
</tr>
<tr>
<td>ix</td>
<td>12345</td>
<td>00 00 30 39</td>
<td>00000000 00000000 00110000 00111001</td>
</tr>
<tr>
<td>y</td>
<td>-12345</td>
<td>CF C7</td>
<td>11001111 11000111</td>
</tr>
<tr>
<td>iy</td>
<td>-12345</td>
<td>FF FF CF C7</td>
<td>11111111 11111111 11001111 11000111</td>
</tr>
</tbody>
</table>
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Overflow, sign extension
- **Shifting and arithmetic operations**
Shift Operations

- Left shift \((x \ll n)\) bit vector \(x\) by \(n\) positions
 - Throw away (drop) extra bits on left
 - Fill with 0s on right

- Right shift \((x \gg n)\) bit-vector \(x\) by \(n\) positions
 - Throw away (drop) extra bits on right
 - Logical shift (for unsigned values)
 - Fill with 0s on left
 - Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of \(x\)
Shift Operations

- **Left shift** ($x<<n$)
 - Fill with 0s on right

- **Right shift** ($x>>n$)
 - **Logical shift** (for unsigned values)
 - Fill with 0s on left
 - **Arithmetic shift** (for signed values)
 - Replicate most significant bit on left

Notes:
- Shifts by $n<0$ or $n \geq w$ (w is bit width of x) are **undefined**
- **In C**: behavior of $>>$ is determined by compiler
 - In gcc / C lang, depends on data type of x (signed/unsigned)
- **In Java**: logical shift is $>>>$ and arithmetic shift is $>>$
Shifting Arithmetic?

- What are the following computing?
 - $x >> n$
 - $0b\ 0100 \gg 1 = 0b\ 0010$
 - $0b\ 0100 \gg 2 = 0b\ 0001$
 - Divide by 2^n
 - $x << n$
 - $0b\ 0001 << 1 = 0b\ 0010$
 - $0b\ 0001 << 2 = 0b\ 0100$
 - Multiply by 2^n

- Shifting is faster than general multiply and divide operations
Left Shifting Arithmetic 8-bit Example

- No difference in left shift operation for unsigned and signed numbers (just manipulates bits)
 - Difference comes during interpretation: $x \times 2^n$?

\[
\begin{align*}
x &= 25; & \quad 00011001 &= 25 & \text{Signed} & \quad 25 & \text{Unsigned} \\
L1 = x << 2; & \quad 01100100 &= 100 & \quad 100 \\
L2 = x << 3; & \quad 11001000 &= -56 & \quad 200 & \text{signed overflow} \\
L3 = x << 4; & \quad 10010000 &= -112 & \quad 144 & \text{unsigned overflow}
\end{align*}
\]
Right Shifting Arithmetic 8-bit Examples

- **Reminder**: C operator `>>` does *logical* shift on *unsigned* values and *arithmetic* shift on *signed* values
 - **Logical Shift**: \(x / 2^n \)?

\[
\begin{align*}
xu &= 240u; \quad 11110000 = 240 \\
R1u &= xu >> 3; \quad 00011110000 = 30 \quad \text{Round down to} 30/4 = 7.5 \\
R2u &= xu >> 5; \quad 0000011110000 = 7 \\
\end{align*}
\]
Right Shifting Arithmetic 8-bit Examples

- **Reminder:** C operator `>>` does *logical* shift on *unsigned* values and *arithmetic* shift on *signed* values
 - Arithmetic Shift: \(x/2^n \)?

\[
\begin{align*}
x_s &= -16; \quad 11110000 = -16 \\
R_{1s}=x_u>>3; \quad 11111110000 &= -2 \\
R_{2s}=x_u>>5; \quad 1111111110000 &= -1
\end{align*}
\]

- Rounding (down)
Practice Question

For the following expressions, find a value of **signed char** `x`, if there exists one, that makes the expression **TRUE**. Compare with your neighbor(s)!

- Assume we are using 8-bit arithmetic:
 - `x == (unsigned char) x`
 - **Example:**
 - `x = 0`
 - **All solutions:**
 - works for all `x`
 - `x >= 128U`
 - **Example:**
 - `x = -1`
 - **All solutions:**
 - any `x < 0`
 - `x != (x>>2) << 2`
 - **Example:**
 - `x = 3`
 - **All solutions:**
 - any `x` where lowest two bits are not `0b00`
 - `x == -x`
 - **Example:**
 - `x = 0`
 - **All solutions:**
 - 1) `x = 0b0...0 = 0`
 - 2) `x = 0b10...0 = -128`
 - **Hint:** there are two solutions
 - `(x < 128U) && (x > 0x3F)`
Summary

- Sign and unsigned variables in C
 - Bit pattern remains the same, just interpreted differently
 - Strange things can happen with our arithmetic when we convert/cast between sign and unsigned numbers
 - Type of variables affects behavior of operators (shifting, comparison)
- We can only represent so many numbers in w bits
 - When we exceed the limits, arithmetic overflow occurs
 - Sign extension tries to preserve value when expanding
- Shifting is a useful bitwise operator
 - Right shifting can be arithmetic (sign) or logical (0)
 - Can be used in multiplication with constant or bit masking
Some examples of using shift operators in combination with bitmasks, which you may find helpful for Lab 1.

- Extract the 2nd most significant byte of an \texttt{int}
- Extract the sign bit of a signed \texttt{int}
- Conditionals as Boolean expressions
Using Shifts and Masks

- Extract the 2nd most significant byte of an \texttt{int}:
 - First shift, then mask: \((x>>16) \& 0xFF\)
 - Or first mask, then shift: \((x \& 0xFF0000) >> 16\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x>>16)</td>
<td>00000000 00000000 00000001 00000010</td>
</tr>
<tr>
<td>0xFF</td>
<td>00000000 00000000 00000000 11111111</td>
</tr>
<tr>
<td>((x>>16) & 0xFF)</td>
<td>00000000 00000000 00000000 00000100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(x)</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>0xFF0000</td>
<td>00000000 11111111 00000000 00000000</td>
</tr>
<tr>
<td>(x & 0xFF0000)</td>
<td>00000000 00000010 00000000 00000000</td>
</tr>
<tr>
<td>((x&0xFF0000) >>16)</td>
<td>00000000 00000000 00000000 00000100</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- Extract the *sign bit* of a signed *int*:
 - First shift, then mask: \((x\gg\!31) \& 0x1\)
 - Assuming arithmetic shift here, but this works in either case
 - Need mask to clear 1s possibly shifted in

<table>
<thead>
<tr>
<th></th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>x>>31</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>(x>>31) & 0x1</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>10000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>x>>31</td>
<td>11111111 11111111 11111111 11111111</td>
</tr>
<tr>
<td>0x1</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
<tr>
<td>(x>>31) & 0x1</td>
<td>00000000 00000000 00000000 00000000</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- **Conditionals as Boolean expressions**
 - For `int x`, what does `(x<<31)>>31` do?

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x=!!123</td>
<td>00000000 00000000 00000000 00000001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x<<31</td>
<td>10000000 00000000 00000000 00000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x<<31)>>31</td>
<td>11111111 11111111 11111111 11111111</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>!x</td>
<td>00000000 00000000 00000000 00000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>!x<<31</td>
<td>00000000 00000000 00000000 00000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(!x<<31)>>31</td>
<td>00000000 00000000 00000000 00000000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Can use in place of conditional:
 - In C: `if (x) {a=y;} else {a=z;}` equivalent to `a=x?y:z;`
 - `a=((x<<31)>>31)&y) | ((!x<<31)>>31)&z);`