Data III & Integers I
CSE 351 Winter 2020

Instructor:
Ruth Anderson

Teaching Assistants:
Jonathan Chen
Justin Johnson
Porter Jones
Josie Lee
Jeffery Tian
Callum Walker
Eddy (Tianyi) Zhou

http://xkcd.com/257/
Administrivia

- hw3 due Wednesday, hw4 due Friday

- Lab 1a released
 - Workflow:
 1) Edit `pointer.c`
 2) Run the Makefile (`make`) and check for compiler errors & warnings
 3) Run `ptest (. /ptest)` and check for correct behavior
 4) Run rule/syntax checker (`python dlc.py`) and check output
 - Due Friday 1/17, will overlap a bit with Lab 1b
 - We grade just your last submission
Lab Reflections

- All subsequent labs (after Lab 0) have a “reflection” portion
 - The Reflection questions can be found on the lab specs and are intended to be done after you finish the lab
 - You will type up your responses in a .txt file for submission on Canvas
 - These will be graded “by hand” (read by TAs)

- Intended to check your understand of what you should have learned from the lab
 - Also great practice for short answer questions on the exams
Memory, Data, and Addressing

- Representing information as bits and bytes
 - Binary, hexadecimal, fixed-widths

- Organizing and addressing data in memory
 - Memory is a byte-addressable array
 - Machine “word” size = address size = register size
 - Endianness – ordering bytes in memory

- Manipulating data in memory using C
 - Assignment
 - Pointers, pointer arithmetic, and arrays

- Boolean algebra and bit-level manipulations
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic (True → 1, False → 0)
 - AND: \(A \& B = 1 \) when both A is 1 and B is 1
 - OR: \(A | B = 1 \) when either A is 1 or B is 1
 - XOR: \(A ^ B = 1 \) when either A is 1 or B is 1, but not both
 - NOT: \(\sim A = 1 \) when A is 0 and vice-versa
 - DeMorgan’s Law: \(\sim (A | B) = \sim A \& \sim B \)
 \(\sim (A \& B) = \sim A \mid \sim B \)

<table>
<thead>
<tr>
<th></th>
<th>AND</th>
<th>OR</th>
<th>XOR</th>
<th>NOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>&</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>|</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>^</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>~</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| | 0 | 1

0 0 0 0 1 1 1 1 1 0 1 0
General Boolean Algebras

❖ Operate on bit vectors
 ▪ Operations applied bitwise
 ▪ All of the properties of Boolean algebra apply

```
01101001 & 01010101 = 01010101
01101001 | 01010101 = 1110000
01101001 ^ 01010101 = ~ 01010101
```

❖ Examples of useful operations:

\[x \land x = 0 \]

\[x \lor 1 = 1, \quad x \lor 0 = x \]
Bit-Level Operations in C

- (AND), | (OR), ^ (XOR), ~ (NOT)
 - View arguments as bit vectors, apply operations bitwise
 - Apply to any “integral” data type
 - long, int, short, char, unsigned

Examples with char a, b, c;

- a = (char) 0x41; // 0x41->0b 0100 0001
 b = ~a; // 0b ->0x

- a = (char) 0x69; // 0x69->0b 0110 1001
 b = (char) 0x55; // 0x55->0b 0101 0101
 c = a & b; // 0b ->0x

- a = (char) 0x41; // 0x41->0b 0100 0001
 b = a; // 0b 0100 0001
 c = a ^ b; // 0b ->0x
Contrast: Logic Operations

- Logical operators in C: `&&` (AND), `||` (OR), `!` (NOT)
 - `0` is False, anything nonzero is True
 - Always return 0 or 1
 - Early termination (a.k.a. short-circuit evaluation) of `&&`, `||`

- Examples (char data type)
 - `!0x41` -> `0x00`
 - `!0x00` -> `0x01`
 - `!!0x41` -> `0x01`
 - `0xCC && 0x33` -> `0x01`
 - `0x00 || 0x33` -> `0x01`
 - `p && *p`
 - If `p` is the null pointer (0x0), then `p` is never dereferenced!
Roadmap

C:

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Java:

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =
c.getMPG();

Assembly language:

get_mpg:
 pushq %rbp
 movq %rsp, %rbp
 ...
 popq %rbp
 ret

Machine code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111010100001111

Computer system:

Memory & data
Integers & floats
x86 assembly
Procedures & stacks
Executables
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

OS:

Windows 10
OS X Yosemite
But before we get to integers....

- Encode a standard deck of playing cards
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?
Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

 “One-hot” encoding (similar to set notation)

 Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

 Pair of one-hot encoded values

 Easier to compare suits and values, but still lots of bits used
Two better representations

3) Binary encoding of all 52 cards – only 6 bits needed

- $2^6 = 64 \geq 52$
- Fits in one byte (smaller than one-hot encodings)
- How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value (4 bits)

- Also fits in one byte, and easy to do comparisons

<table>
<thead>
<tr>
<th>Suit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>♠</td>
<td>00</td>
</tr>
<tr>
<td>♦</td>
<td>01</td>
</tr>
<tr>
<td>♥</td>
<td>10</td>
</tr>
<tr>
<td>♣</td>
<td>11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K</th>
<th>Q</th>
<th>J</th>
<th>. . .</th>
<th>3</th>
<th>2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td>. . .</td>
<td>0011</td>
<td>0010</td>
<td>0001</td>
</tr>
</tbody>
</table>
Compare Card **Suits**

```c
char hand[5];        // represents a 5-card hand
char card1, card2;  // two cards to compare

card1 = hand[0];
card2 = hand[1];
...

if ( sameSuitP(card1, card2) ) { ... }
```

```c
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
    return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
    // return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector `v`. Here we turn all *but* the bits of interest in `v` to 0.

SUITS_MASK = 0x30 = `0 0 1 1 0 0 0 0`

<table>
<thead>
<tr>
<th>suit</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

returns int SUIT_MASK = 0x30 = `0 0 1 1 0 0 0 0` **equivalent**
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
 return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
 //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

\[!(x^y) \text{ equivalent to } x==y \]
Compare Card Values

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));
}

VALUE_MASK = 0x0F = \begin{array}{cccccccc}
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector v.
#define VALUE_MASK 0x0F

```c
int greaterValue(char card1, char card2) {
    return ((unsigned int)(card1 & VALUE_MASK) >
             (unsigned int)(card2 & VALUE_MASK));
}
```

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector \(v \).
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representation
 - Overflow, sign extension
- Shifting and arithmetic operations
Encoding Integers

- The hardware (and C) supports two flavors of integers
 - *unsigned* – only the non-negatives
 - *signed* – both negatives and non-negatives

- Cannot represent all integers with w bits
 - Only 2^w distinct bit patterns
 - Unsigned values: $0 \ldots 2^w - 1$
 - Signed values: $-2^{w-1} \ldots 2^{w-1} - 1$

- **Example**: 8-bit integers (*e.g.* `char`)
Unsigned Integers

- Unsigned values follow the standard base 2 system
 - \[b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + \cdots + b_12^1 + b_02^0 \]

- Add and subtract using the normal “carry” and “borrow” rules, just in binary

\[
\begin{array}{c}
63 \\
+ 8 \\
\hline
71
\end{array}
\quad \begin{array}{c}
00111111 \\
+00001000 \\
\hline
01000111
\end{array}
\]

- Useful formula: \[2^{N-1} + 2^{N-2} + \cdots + 2 + 1 = 2^N - 1 \]
 - i.e. \(N \) ones in a row = \(2^N - 1 \)

- How would you make signed integers?
Sign and Magnitude

- Designate the high-order bit (MSB) as the “sign bit”
 - \(\text{sign}=0 \): positive numbers; \(\text{sign}=1 \): negative numbers

- Benefits:
 - Using MSB as sign bit matches positive numbers with unsigned
 - All zeros encoding is still \(= 0 \)

- Examples (8 bits):
 - \(0\times00 = 00000000_2 \) is non-negative, because the sign bit is 0
 - \(0\times7F = 01111111_2 \) is non-negative (\(+127_{10} \))
 - \(0\times85 = 10000101_2 \) is negative (\(-5_{10} \))
 - \(0\times80 = 10000000_2 \) is negative... zero???
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks?
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
 - Arithmetic is cumbersome
 - Example: $4 - 3 \neq 4 + (-3)$
 - Negatives “increment” in wrong direction!
Two’s Complement

- Let’s fix these problems:
 1) “Flip” negative encodings so incrementing works
Two’s Complement

- Let’s fix these problems:
 1) “Flip” negative encodings so incrementing works
 2) “Shift” negative numbers to eliminate −0

- MSB *still* indicates sign!
 - This is why we represent one more negative than positive number \((-2^{N-1} \text{ to } 2^{N-1} - 1)\)
Two’s Complement Negatives

- Accomplished with one neat mathematical trick!

- 4-bit Examples:
 - 1010_2 unsigned:

 \[1\cdot2^3 + 0\cdot2^2 + 1\cdot2^1 + 0\cdot2^0 = 10 \]
 - 1010_2 two’s complement:

 \[-1\cdot2^3 + 0\cdot2^2 + 1\cdot2^1 + 0\cdot2^0 = -6 \]

- -1 represented as:
 - $1111_2 = -2^3 + (2^3 - 1)$

 MSB makes it super negative, add up all the other bits to get back up to -1
Why Two’s Complement is So Great

- Roughly same number of (+) and (−) numbers
- Positive number encodings match unsigned
- Single zero
- All zeros encoding = 0

Simple negation procedure:
- Get negative representation of any integer by taking bitwise complement and then adding one!

(\sim x + 1 == -x)
Polling Question

- Take the 4-bit number encoding $x = 0b1011$
- Which of the following numbers is NOT a valid interpretation of x using any of the number representation schemes discussed today?
 - Unsigned, Sign and Magnitude, Two’s Complement
 - Vote at http://pollev.com/rea

A. -4
B. -5
C. 11
D. -3
E. We’re lost...
Summary

- **Bit-level operators allow for fine-grained manipulations of data**
 - Bitwise AND (\&), OR (\|), and NOT (\~) different than logical AND (&&), OR (||), and NOT (!)
 - Especially useful with bit masks

- **Choice of *encoding scheme* is important**
 - Tradeoffs based on size requirements and desired operations

- **Integers represented using unsigned and two’s complement representations**
 - Limited by fixed bit width
 - We’ll examine arithmetic operations next lecture