Data III & Integers I
CSE 351 Winter 2020

Instructor:
Ruth Anderson

Teaching Assistants:
Jonathan Chen
Justin Johnson
Porter Jones
Josie Lee
Jeffery Tian
Callum Walker
Eddy (Tianyi) Zhou

http://xkcd.com/257/
Administrivia

- hw3 due Wednesday, hw4 due Friday

- Lab 1a released
 - Workflow:
 1) Edit `pointer.c`
 2) Run the Makefile (`make`) and check for compiler errors & warnings
 3) Run `ptest (. / ptest)` and check for correct behavior
 4) Run rule/syntax checker (`python dlc.py`) and check output
 - Due Friday 1/17, will overlap a bit with Lab 1b
 - We grade just your last submission
Lab Reflections

- All subsequent labs (after Lab 0) have a “reflection” portion
 - The Reflection questions can be found on the lab specs and are intended to be done after you finish the lab
 - You will type up your responses in a .txt file for submission on Canvas
 - These will be graded “by hand” (read by TAs)

- Intended to check your understand of what you should have learned from the lab
 - Also great practice for short answer questions on the exams
Memory, Data, and Addressing

- Representing information as bits and bytes
 - Binary, hexadecimal, fixed-widths
- Organizing and addressing data in memory
 - Memory is a byte-addressable array
 - Machine “word” size = address size = register size
 - Endianness – ordering bytes in memory
- Manipulating data in memory using C
 - Assignment
 - Pointers, pointer arithmetic, and arrays
- **Boolean algebra and bit-level manipulations**
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic (True → 1, False → 0)
 - AND: \(A \& B = 1 \) when both A is 1 and B is 1
 - OR: \(A | B = 1 \) when either A is 1 or B is 1
 - XOR: \(A ^ B = 1 \) when either A is 1 or B is 1, but not both
 - NOT: \(\neg A = 1 \) when A is 0 and vice-versa
 - DeMorgan’s Law:
 - \(\neg (A | B) = \neg A \& \neg B \)
 - \(\neg (A \& B) = \neg A | \neg B \)

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
General Boolean Algebras

- Operate on bit vectors
 - Operations applied bitwise
 - All of the properties of Boolean algebra apply

Examples of useful operations:

\[x \lor x = 0 \]

“sets to 1”

\[x \land 1 = 1, \quad \overline{x} \lor x = 0 \]

\[x \land 0 = x \]

“leaves as is”

\[0 \lor 1 = 1, \quad 1 \lor x = 1 \]

\[0 \land 0 = 0, \quad 1 \land 0 = 1 \]
Bit-Level Operations in C

- & (AND), | (OR), ^ (XOR), ~ (NOT)
 - View arguments as bit vectors, apply operations bitwise
 - Apply to any “integral” data type
 - long, int, short, char, unsigned

Examples with char a, b, c;

- a = (char) 0x41; // 0x41->0b 0100 0001
 b = ~a; // 0b 1111 1110 ->0x B E
- a = (char) 0x69; // 0x69->0b 0110 1001
 b = (char) 0x55; // 0x55->0b 0101 0101
 c = a & b; // 0b 0100 0001 ->0x 41
- a = (char) 0x41; // 0x41->0b 0100 0001
 b = a; // 0b 0100 0001
 c = a ^ b; // 0b 0000 0000 ->0x 0 0
Contrast: Logic Operations

- Logical operators in C: `&&` (AND), `||` (OR), `!` (NOT)
 - 0 is False, anything nonzero is True
 - **Always** return 0 or 1
 - **Early termination** (a.k.a. short-circuit evaluation) of `&&`, `||`

- **Examples** (char data type)
 \[\begin{array}{c} \text{char} \text{ data type} \end{array} \]
 \[\begin{array}{c|c|c} \text{char} & \text{binary} & \text{numeric} \\ \hline 0xCC & 0b1100 1100 & 0x00 1100 1100 \\ 0x33 & 0b0011 0011 & 0x00 0011 0011 \\ \end{array} \]

- \(\&\& \) examples:
 - \(!0\times41 \rightarrow 0\times00 \)
 - \(!0\times00 \rightarrow 0\times01 \)
 - \(!(0\times41) \rightarrow 0\times01 \)
 - \(p \ \&\& \ *p \)
 - If \(p \) is the **null pointer** (0x0), then \(p \) is never dereferenced!
 - If (1) determines output of logical operator, then (2) is never evaluated
Roadmap

C:
```c
// C code

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:
```java
// Java code

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg = c.getMPG();
```

Assembly language:
```
get_mpg:
pushq   %rbp
movq    %rsp, %rbp
...
popq    %rbp
ret
```

Machine code:
```
0100100000011000
1000100110000100
1000100110000100
1100010110110100
```

Computer system:

Memory & data

Integers & floats

x86 assembly

Procedures & stacks

Executables

Arrays & structs

Memory & caches

Processes

Virtual memory

Memory allocation

Java vs. C

OS:

- Windows 10
- OS X Yosemite
But before we get to integers....

- Encode a standard deck of playing cards
- **52 cards in 4 suits**
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?
Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1
 - "One-hot" encoding (similar to set notation)
 - Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

\[
\begin{align*}
\text{low-order 52 bits of 64-bit word} & \quad \text{52 bits fits in 7 bytes (56 bits)}
\end{align*}
\]

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set
 - Pair of one-hot encoded values
 - Easier to compare suits and values, but still lots of bits used

\[
\begin{align*}
\text{4 suits} & \quad \text{13 numbers} \\
\text{17 bits} & \quad \text{3 bytes}
\end{align*}
\]
Two better representations

3) Binary encoding of all 52 cards – only 6 bits needed
 - \(2^6 = 64 \geq 52\)
 - \(2^5 = 32 < 52\)
 - Fits in one byte (smaller than one-hot encodings)
 - How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value (4 bits)
 - Also fits in one byte, and easy to do comparisons

<table>
<thead>
<tr>
<th></th>
<th>K</th>
<th>Q</th>
<th>J</th>
<th>. . .</th>
<th>3</th>
<th>2</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>♠</td>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td>. . .</td>
<td>0011</td>
<td>0010</td>
<td>0001</td>
</tr>
<tr>
<td>♦</td>
<td>♣</td>
<td>00</td>
<td>♦</td>
<td>01</td>
<td>♠</td>
<td>11</td>
<td>♠</td>
</tr>
</tbody>
</table>
Compare Card Suits

```c
char hand[5];       // represents a 5-card hand
char card1, card2;  // two cards to compare

card1 = hand[0];
card2 = hand[1];
...

if ( sameSuitP(card1, card2) ) { ... }
```

```
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
    return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
    // return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```

- **mask**: A bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector. Here we turn all *but* the bits of interest in \(v \) to 0.

- **SUIT_MASK** = 0x30 = \[00110000\]
 - Suit: \(x \& 0 = 0 \)
 - Value: \(x \& 1 = x \)
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
 return (!(card1 & SUIT_MASK) ^ (card2 & SUIT_MASK));
 //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector v.
Here we turn all but the bits of interest in v to 0.

! (x^y) equivalent to x==y
Compare Card Values

```c
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
    return ((unsigned int)(card1 & VALUE_MASK) > (unsigned int)(card2 & VALUE_MASK));
}
```

`VALUE_MASK = 0x0F = 00000011111`
Compare Card Values

```
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
    return ((unsigned int)(card1 & VALUE_MASK) >
            (unsigned int)(card2 & VALUE_MASK));
}
```

- **mask:** a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector \(v \).
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representation
 - Overflow, sign extension
- Shifting and arithmetic operations
Encoding Integers

- The hardware (and C) supports two flavors of integers
 - *unsigned* – only the non-negatives
 - *signed* – both negatives and non-negatives

- Cannot represent all integers with w bits
 - Only 2^w distinct bit patterns
 - Unsigned values: $0 \ldots 2^w-1$
 - Signed values: $-2^{w-1} \ldots 2^{w-1}-1$

- Example: 8-bit integers (*e.g.* `char`)
Unsigned Integers

- Unsigned values follow the standard base 2 system
 \[b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + \cdots + b_12^1 + b_02^0 \]

- Add and subtract using the normal “carry” and “borrow” rules, just in binary

\[
\begin{array}{c}
\text{1} \\
63 \\
+ \text{8} \\
\text{71}
\end{array}
\begin{array}{c}
\text{111} \\
00111111 \\
\text{+00001000} \\
01000111
\end{array}
\begin{array}{c}
x, 6 \text{ 1's in a row} \\
x + 1 = 0b10000000 = 2^6 \\
\text{x} = 2^6 - 1
\end{array}
\]

- Useful formula: \[2^{N-1} + 2^{N-2} + \cdots + 2 + 1 = 2^N - 1 \]
 \[\text{i.e. N ones in a row} = 2^N - 1 \]

- How would you make signed integers?
Sign and Magnitude

- Designate the high-order bit (MSB) as the “sign bit”
 - $\text{sign}=0$: positive numbers; $\text{sign}=1$: negative numbers

- Benefits:
 - Using MSB as sign bit matches positive numbers with unsigned numbers.
 - All zeros encoding is still 0

- Examples (8 bits):
 - $0x00 = 00000000_2$ is non-negative, because the sign bit is 0
 - $0x7F = 01111111_2$ is non-negative ($+127_{10}$)
 - $0x85 = 10000101_2$ is negative (-5_{10})
 - $0x80 = 10000000_2$ is negative... zero???
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks?

Unsigned

Signed

<table>
<thead>
<tr>
<th>Value</th>
<th>Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>0001</td>
<td>0001</td>
</tr>
<tr>
<td>0010</td>
<td>0010</td>
</tr>
<tr>
<td>0011</td>
<td>0011</td>
</tr>
<tr>
<td>0100</td>
<td>0100</td>
</tr>
<tr>
<td>0101</td>
<td>0101</td>
</tr>
<tr>
<td>0110</td>
<td>0110</td>
</tr>
<tr>
<td>0111</td>
<td>0111</td>
</tr>
<tr>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>1001</td>
<td>1001</td>
</tr>
<tr>
<td>1010</td>
<td>1010</td>
</tr>
<tr>
<td>1011</td>
<td>1011</td>
</tr>
<tr>
<td>1100</td>
<td>1100</td>
</tr>
<tr>
<td>1101</td>
<td>1101</td>
</tr>
<tr>
<td>1110</td>
<td>1110</td>
</tr>
<tr>
<td>1111</td>
<td>1111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pos</th>
<th>0000</th>
<th>0001</th>
<th>0010</th>
<th>0011</th>
<th>0100</th>
<th>0101</th>
<th>0110</th>
<th>0111</th>
<th>1000</th>
<th>1001</th>
<th>1010</th>
<th>1011</th>
<th>1100</th>
<th>1101</th>
<th>1110</th>
<th>1111</th>
</tr>
</thead>
<tbody>
<tr>
<td>neg</td>
<td>0000</td>
<td>0001</td>
<td>0010</td>
<td>0011</td>
<td>0100</td>
<td>0101</td>
<td>0110</td>
<td>0111</td>
<td>1000</td>
<td>1001</td>
<td>1010</td>
<td>1011</td>
<td>1100</td>
<td>1101</td>
<td>1110</td>
<td>1111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>+0</th>
<th>+1</th>
<th>+2</th>
<th>+3</th>
<th>+4</th>
<th>+5</th>
<th>+6</th>
<th>+7</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td>-4</td>
<td>-5</td>
<td>-6</td>
<td>-7</td>
</tr>
</tbody>
</table>

value encoding

neg pos
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
 - Arithmetic is cumbersome
 - Example: $4 - 3 \neq 4 + (-3)$

<table>
<thead>
<tr>
<th>4</th>
<th>0100</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>0011</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
</tr>
</tbody>
</table>

- Negatives “increment” in wrong direction!
Two’s Complement

Let’s fix these problems:

1) “Flip” negative encodings so incrementing works
Two’s Complement

- Let’s fix these problems:
 1) “Flip” negative encodings so incrementing works
 2) “Shift” negative numbers to eliminate –0

- MSB *still* indicates sign!
 - This is why we represent one more negative than positive number (\(-2^{N-1}\) to \(2^{N-1} - 1\))
Two’s Complement Negatives

- Accomplished with one neat mathematical trick!

- b_{w-1} has weight -2^{w-1}, other bits have usual weights $+2^i$

- 4-bit Examples:
 - 1010_2 unsigned: $1*2^3+0*2^2+1*2^1+0*2^0 = 10$
 - 1010_2 two’s complement: $-1*2^3+0*2^2+1*2^1+0*2^0 = -6$

- -1 represented as: $1111_2 = -2^3+(2^3 - 1)$
 - MSB makes it super negative, add up all the other bits to get back up to -1
Why Two’s Complement is So Great

- Roughly same number of (+) and (−) numbers
- Positive number encodings match unsigned
- Single zero
- All zeros encoding = 0

Simple negation procedure:
- Get negative representation of any integer by taking bitwise complement and then adding one!
 \[(\sim x + 1 = -x)\]
Polling Question

- Take the 4-bit number encoding \(x = 0b1011 \)
- Which of the following numbers is NOT a valid interpretation of \(x \) using any of the number representation schemes discussed today?
 - Unsigned, Sign and Magnitude, Two’s Complement
 - Vote at http://pollev.com/rea

A. -4

B. -5

C. 11

D. 3

E. We’re lost...

Calculations:

- **Unsigned:** \(8 + 2 + 1 = 11 \)
- **Sign + Magnitude:** \(1011 \rightarrow -(2+1) = -3 \)
- **Two’s Complement:** \(-8 + 2 + 1 = -5 \)

 \(-x = 0b \ 0100 + 1 = 5 \rightarrow x = -5\)
Summary

- Bit-level operators allow for fine-grained manipulations of data
 - Bitwise AND (\&), OR (\mid), and NOT (\sim) different than logical AND (&&), OR (\mid\mid), and NOT (!)
 - Especially useful with bit masks

- Choice of \textit{encoding scheme} is important
 - Tradeoffs based on size requirements and desired operations

- Integers represented using unsigned and two’s complement representations
 - Limited by fixed bit width
 - We’ll examine arithmetic operations next lecture