CSE 351 AB/BB Y 4
Section 9

Meltdown and Wrap-Up
With Callum and Amy!

Meltdown

~_Meltdown and Spectre

Meltdown is a critical security flaw disclosed in January
2018 affecting a huge variety of modern processors. It
allows a process to read all memory, bypassing usual
security checks!

Spectre is a somewhat similar vulnerability, discovered
around the same time, which exploits speculative

execution to read private memory from other processes.

o Itis harder to exploit, but harder to mitigate
We will be focusing on Meltdown today

AN

=

~_Speculative Execution

We haven’t quite been honest with you this quarter... ‘
e Modern Intel (and other) CPUs actually work hundreds of instructions H—
ahead of what your program is doing at any given time
o Sometimes, instructions are not even executed sequentially; many modern
processors support out-of-order execution, where the CPU can schedule
future instructions while waiting on a previous slower one to finish (e.g. one
which reads from memory)
e Branch prediction: CPU tries to predict which branch your program will
take, and executes those instructions ahead of time (“speculatively”)
o Based on past program behavior, e.g. if a branch is known to be taken
almost all of the time, the processor will work ahead on this branch and

commit state changes if the guess was correct

~_Speculative Execution

e If the CPU predicts incorrectly, the results are discarded /
before the program knows they exist /
o Maintains correctness, just loses a little speed
e However...

o Instructions executed speculatively do not always trigger exceptions
for access to privileged memory locations
o And, these instructions affect the cache

~_Virtual Memory Space

e Modern operating systems map %

kernel memory into each process’s

Ph I
VA Space. OXFFFF FFFF FFFF Keme:)::u:t:; = Meﬁg@
o SpeedS Up SyStem Ca”S SRR AL S %rsp (stack pointer)
e Kernel memory often contains :
mapping for the computer’s entire Memory mapped region for

shared libraries

I

Run-time heap
(created at run time by malloc)

physical memory

Read/write data

Read-only code and data

0x0000 0040 0000

ANNNNN\N

~_Meltdown Assumptions

e All of physical memory is mapped to kernel addresses in /
user process /

o Start address (VA in user process) of physical memory is known, Ak
o Physical memory is K bytes total, and mapped directly, [A, ... (A, + K- 1)]

e An exception (illegal memory access) can be
handled/suppressed

e Kernel Address Space Layout Randomization not used
o Similar to randomizing start address of stack, kernel data structure start
address can be randomized

~_Meltdown Example .

e Set up an array that is large enough to span 255 pages
o So we can index into it using a byte /

e Speculatively try to access a byte from kernel memory

e Use that as an index into the array, multiplied by your
system’s page size to ensure that adjacent accesses are
not cached together

e Try to access each array index (separated by the page
size) and time how long it takes.

e The index that took much less time to access
corresponds to the secret data!

~_Meltdown Example «’

char array[256 * PAGE_SIZE]; /
flUSh_CaCheO ’ [Executed speculatively! } /

if (<condition that is always false>)
char data = *(<kernel address>);
char idx = array[data * PAGE_SIZE];

for (int i = 0; i < 255; i++)
access(array[i * PAGE_SIZE]);

~_Meltdown Example

| | .
0 50 100 150 200 250

200 &= ’ ‘

Access time

Page

e Index with unusually fast access corresponds to the
secret data!

~_Meltdown Summary

e Allows a user process to read all of physical memory on /
the system, which is mapped in kernel addresses and by /

extension in user process address space

e Visit meltdownattack.com to read the original papers for
Meltdown and Spectre if you're interested in learning
more!

http://meltdownattack.com

~ Mitigation
e KAISER (patch by Gruss et al.) implements a stronger
isolation between kernel and user space. It leaves

physical memory unmapped in kernel address space.
o https://lwn.net/Articles/738975/

e Use an AMD processor, which doesn’t bypass memory
protection during speculative execution.

https://lwn.net/Articles/738975/

~_That’s All, Folks! ’

Thanks for attending section and making this quarter great. //

The remainder of our section time will be office hours if you

have any questions. Feel free to stick around if you would just
like to talk as well ;)

We’'re in the home stretch now. Best of luck on everything)!

13

Course Evaluations

https://uw.iasystem.org/survey/228930

