
CSE	351	Section	6	–	Structs	and	Caches	
Hi	there!	Welcome	back	to	section,	we’re	happy	that	you’re	here	J	
	

Structs	
• Structs	are	contiguously	allocated	chunks	of	memory	that	hold	a	programmer-defined	collection	of	

potentially	disparate	variables.	

• Individual	fields	appear	in	the	struct	in	the	order	that	they	are	declared	

• Each	field	follows	its	variable	alignment	requirement,	with	internal	fragmentation	added	between	fields	as	
necessary.	

• The	overall	struct	is	aligned	according	to	the	largest	field	alignment	requirement,	with	external	
fragmentation	added	at	the	end	as	necessary.	

	
	
struct Student {
 int id;
 char* name;
 char age;
};

a) Fill	in	which	bytes	are	used	by	which	variables	and	label	the	rest	as	internal	or	external	fragmentation.	The	
first	variable	“id”	is	given.	

	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	

 Id internal	frag	 	 	 name	 	 	 age	 external	fragmentation

b) What	is	the	size	of	struct Student?	24	bytes	

c) Give	a	reordering	of	the	fields	in	struct Student	such	that	there	is	no	internal	fragmentation	

struct Student {

	 char* name;
 int id;
 char age;

};

d) How	much	external	fragmentation	does	this	new	struct Student	have?	3	bytes	

e) What	is	the	size	of	this	new	struct Student?	16	bytes	(smaller	than	before)	

	

Caches:	Locality!	
Recall	that	we	have	two	types	of	locality	that	we	can	have	in	code:	 	

Temporal	locality:	when	recently	referenced	items	are	likely	to	be	referenced	again	in	the	near	future.																				
Spatial	locality:	when	nearby	addresses	tend	to	be	referenced	close	together	in	time.		

For	each	type	of	locality,	can	you	give	an	example	of	when	we	might	see	it	in	code?	

Temporal	Locality:		 Spatial	Locality:	

Accessing	a	sum	counter	over	and	over;	reading	and	
writing	to	the	same	variable;	etc.	

Accessing	a[0]	in	an	array,	then	a[1],	then	a[2]	in	order;	
accessing	the	first	field	in	a	struct,	then	the	second,	then	
the	third;	etc.	

Accessing	a	Cache	(Hit	or	Miss?)	
Assume	the	following	caches	all	have	block	size	𝐾 = 4	and	are	in	the	current	state	shown	(you	can	ignore	"—").			
All	values	are	shown	in	hex.		Tag	fields	are	padded,	while	bytes	of	the	cache	blocks	are	shown	in	full.	The	word	size	
for	the	machine	with	these	caches	is	12	bits	(i.e.	addresses	are	12	bits	long)	

Direct-Mapped:	
Set	 Valid	 Tag	

(8	
bits)	

B0	 B1	 B2	 B3	 Set	 Valid	 Tag	
(8	
bits)	

B0	 B1	 B2	 B3	 	 	

0	 1 15 63 B4 C1 A4 8	 0 — — — — — 	 Offset	bits: 2
1	 0 — — — — — 9	 1 00 01 12 23 34
2	 0 — — — — — A	 1 01 98 89 CB BC
3	 1 0D DE AF BA DE B	 0 1E 4B 33 10 54 	 Index	bits: 4
4	 0 — — — — — C	 0 — — — — —
5	 0 — — — — — D	 1 11 C0 04 39 AA
6	 1 13 31 14 15 93 E	 0 — — — — — 	 Tag	bits:	6
7	 0 — — — — — F	 1 0F FF 6F 30 0

	
	 Hit	or	Miss?	 Data	returned	
a) Read	1	byte	at	0x7AC	 Miss	 —	
b) Read	1	byte	at	0x024	 Hit	 0x01	
c) Read	1	byte	at	0x99F	 Miss	 —	

	
2-way	Set	Associative:	
Set	 Valid	 Tag	

(8	
bits)	

B0	 B1	 B2	 B3	 Set	 Valid	 Tag	
(8	
bits)	

B0	 B1	 B2	 B3	 	 	

0	 0 — — — — — 0	 0 — — — — — 	 Offset	bits: 2
1	 0 — — — — — 1	 1 2F 01 20 40 03
2	 1 03 4F D4 A1 3B 2	 1 0E 99 09 87 56
3	 0 — — — — — 3	 0 — — — — — 	 Index	bits: 3
4	 0 06 CA FE F0 0D 4	 0 — — — — —

5	 1 21 DE AD BE EF 5	 0 — — — — —
6	 0 — — — — — 6	 1 37 22 B6 DB AA 	 Tag	bits:	7
7	 1 11 00 12 51 55 7	 0 — — — — —

	
	
	
	 Hit	or	Miss?	 Data	returned	
a) Read	1	byte	at	0x435	 Hit	 0xAD	

b) Read	1	byte	at	0x388	 Miss	 —	

c) Read	1	byte	at	0x0D3	 Miss	 —	
	
Fully	Associative:	

Set	 Valid	 Tag	
(12	
bits)	

B0	 B1	 B2	 B3	 Set	 Valid	 Tag	
(12	
bits)	

B0	 B1	 B2	 B3	 	 	

0	 1 1F4 00 01 02 03 0	 0 — — — — — 	 Offset	bits: 2
0	 0 — — — — — 0	 1 0AB 02 30 44 67
0	 1 100 F4 4D EE 11 0	 1 034 FD EC BA 23
0	 1 077 12 23 34 45 0	 0 — — — — — 	 Index	bits: 0
0	 0 — — — — — 0	 1 1C6 00 11 22 33
0	 1 101 DA 14 EE 22 0	 1 045 67 78 89 9A
0	 0 — — — — — 0	 1 001 70 00 44 A6 	 Tag	bits:	10
0	 1 016 90 32 AC 24 0	 0 — — — — —

	
	 Hit	or	Miss?	 Data	returned	
a) Read	1	byte	at	0x1DD	 Hit	 0x23	

b) Read	1	byte	at	0x719	 Hit	 0x11	
c) Read	1	byte	at	0x2AA	 Miss	 —	

	
	

	
Cache	Sim	
If	you	need	help	on	using	the	cache	sim,	take	a	look	at	additional	supplemental	material	that	will	guide	you	through	
using	the	cache	sim	(posted	with	today’s	section	handouts)!	The	cache	sim	is	very	useful	for	lab	4	and	
corresponding	homework	assignments.		

